
 Advanced search

Linux Journal Issue #14/June 1995

Features

Introduction to Eiffel by Dan Wilder
All four compilers for the new Eiffel language are available for
Linux. Dan Wilder introduces us to the language.

Review: xBase Products for Linux by Robert Broughton
Robert Broughton reviews two products, FlagShip and dBMAN,
which provide xBase, the de-facto standard database language
for PCs, on Linux.

Review: Intelligent Multiport Serial Boards by Greg Hankins
Breg Hankins reviews four multi-port serial boards with Linux
support.

News & Articles

Linux at the UW Computer Fair
Linux at Comdex/Fall: A Call for Participation by Mark Bolzern
Interview with Mark Bolzern
Caldera and Corsair

Reviews

Product Review SlickEdit by Jeff Bauer
Book Review Running Linux by Grant Johnson

Columns

Letters to the Editor

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/014/1077.html
https://secure2.linuxjournal.com/ljarchive/LJ/014/1083.html
https://secure2.linuxjournal.com/ljarchive/LJ/014/1097.html
https://secure2.linuxjournal.com/ljarchive/LJ/014/0065.html
https://secure2.linuxjournal.com/ljarchive/LJ/014/0068.html
https://secure2.linuxjournal.com/ljarchive/LJ/014/1087.html
https://secure2.linuxjournal.com/ljarchive/LJ/014/1094.html
https://secure2.linuxjournal.com/ljarchive/LJ/014/1095.html
https://secure2.linuxjournal.com/ljarchive/LJ/014/0066.html
https://secure2.linuxjournal.com/ljarchive/LJ/014/1101.html

Stop the Presses by Phil Hughes
New Products
System Administration Upgrading the Linux Kernel by Mark
Komarinski
Kernel Korner The Linux Keyboard Driver by Andries E. Brouwer

Archive Index

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/014/0067.html
https://secure2.linuxjournal.com/ljarchive/LJ/014/1102.html
https://secure2.linuxjournal.com/ljarchive/LJ/014/1099.html
https://secure2.linuxjournal.com/ljarchive/LJ/014/1080.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Introduction to Eiffel

Dan Wilder

Issue #14, June 1995

Dan introduces us to the Eiffel language, a fairly new Object-Oriented language
designed to streamline the software engineeering process.

In the late 1970s, when I was a journeyman laboring over the macro assembler
language, a simple, elegant, and expressive language called C emerged from
the structured programming tradition. My friends advised me to forget C, to
learn a “real programming language” like PL/1 or Ada, available on many more
of the important platforms, and with commercial staying power due to the
support of the government and major corporations. Ignoring this advice, I
concentrated on C. Some of you may agree my choice was the right one for its
time.

Now, more than a decade later, another simple, elegant, and expressive
language has emerged, this time from the object-oriented tradition. With roots
in Simula, beholden to no backwards compatibility issues, the Eiffel
programming language was designed from scratch by Bertrand Meyer and his
colleagues for the purpose of enabling the construction of robust, general,
reusable software components. With commercial support from a few vendors,
availability on several significant platforms, and some success stories in
development of major commercial applications, this language bears careful
observation.

I have known of Eiffel since 1989, when I read Dr. Meyer's book, Object
Oriented Software Construction (Prentice Hall, 1988). I was impressed with the
language, much as I had been impressed with C when I read Kernighan and
Ritchie's classic, The C Programming Language (Prentice Hall, 1988), ten years
earlier. The opportunity to give Eiffel a try presented itself with the Linux port
announced in 1994 by Bertrand Meyer's company, Interactive Software
Engineering of Goleta, California.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

The Pitch

So what is all this noise about object-oriented programming, and what sets
Eiffel apart from the pack of object-oriented languages?

Much of the promise shown by object-oriented software construction may be
attributed to the possibility of code reuse, particularly the reuse of software
components.

By reuse, I mean the incorporation of previously written software unmodified
into new programs. In the US we have a saying: “if it ain't broke, don't fix it.”
This folk wisdom highlights the result of research studies which indicate the
great hazard of introducing new problems when working on existing software.
Ideally, it should be possible to write something once, then put it on ice to be
reused but never modified, except to fix bugs and perhaps to add new
features. Existing users should be protected, if possible, from effects of such
changes.

Unfortunately reuse has succeeded in only limited ways so far. For example,
the Unix C library or the various widget libraries used in constructing Graphical
User Interfaces are widely used across many platforms. These notwithstanding,
most of the significant computer programs produced today contain great
volumes of handcrafted code. The difficulty of producing software components
with enough built—in flexibility is prominent—and a great part of this difficulty
must be ascribed to language issues.

The Eiffel programming language was designed to promote re-use. Bertrand
Meyer recounts in the preface to Eiffel: The Libraries (Prentice Hall, in press)
how he started out to write reusable components and how he came to
abandon the attempt to use existing languages and instead wrote a language
for the purpose.

Compiled and strongly typed, with genericity (templates), polymorphism,
dynamic binding, exceptions, garbage collection, a genuinely useful
implementation of multiple inheritance, and unique handling of assertions,
Eiffel should be considered a contender on purely technical grounds.

Eiffel provides assertions as language primitives that furnish both in-line design
documents and optional runtime error checking. Assertions are inherited. This
serves to guarantee that descendents will live up to or exceed their ancestors'
promises. Use of these assertions is a part of what is called “design by
contract”. These represent an application of responsibility-driven design at a
language level.

There are also other factors:

• Eiffel has a published, non-proprietary design, coordinated by a nonprofit
consortium whose decisions all existing vendors agree to observe.

• Simple and consistent syntax makes Eiffel an easy language to learn. You
will find no dense nests of parentheses, asterisks, brackets, or
ampersands in this language. If you delight in special cases and obscure
exceptions to rules, with attendant language primitives just for handling
these things, Eiffel is not the language for you.

• Precedence of arithmetic operators gives the order of evaluation of
mathematical expressions you would expect, unless your native
programming language is Smalltalk, Lisp, or Forth.

• Eiffel is available on a wide range of platforms.

The design of Eiffel has been placed in the public domain by Interactive
Software Engineering, Bertrand Meyer's company. The Eiffel trademark is
owned by NICE, the Nonprofit International Consortium for Eiffel, which has
been liberal in bestowing use of the trademark. A validation suite will be
available from NICE later this year. Major Eiffel vendors and users, including
representatives from corporations and academia, are represented on NICE.
Membership is open to any interested party. Proposals of NICE are published
on the newsgroup comp.lang.eiffel. Anybody may participate in the ensuing
discussion.

The official language definition is Eiffel: The Language, By Bertrand Meyer
(Prentice Hall, 1992). Almost 600 pages long, this volume contains a precise
definition of the language, many examples, and a great deal of discussion. The
formal syntax definition occupies only eight pages.

NICE is in the process of standardizing the libraries. PELKS, the Proposed Eiffel
Library Kernel Standard, is in the final stages of adoption, even as the vendors
hasten to bring their own class libraries into line with it. Other libraries may
follow.

Eiffel is available or announced from a number of vendors on a roster of
operating systems or platforms including Windows 3.1, VMS, SunOS, Solaris,
Ultrix, OSF/1, DG Aviion, IBM RS/6000, Silicon Graphics, Macintosh, OS-2, and
NEXTSTEP, as well as Linux.

Many Linux users are interested in seeing vendor interest in our operating
system, and a few astute vendors are beginning to join the fold. It seems not
too surprising that vendors of a language that is in many respects years ahead
of the pack should also be astute enough to recognize the nature of the Linux
community. And they have—all four Eiffel vendors offer Linux ports.

Classes

Object-oriented programming draws on just a few main ideas. I will talk about
three of the important ones and illustrate their realization in the Eiffel
language.

The first important idea is encapsulation: the packaging of data with means to
manipulate it. Such a package, written in a programming language is a class,
but an instance of a class in execution (or in storage) is an object.

In Eiffel, everything exists within a class. There are no external variables or
routines. A class has features. Features in turn are either attributes or routines.

Attributes store values, including references to objects. They may be constant
or variable.

Routines do things. Routines are either procedures or functions. Functions
return results and are not supposed to change system state. Procedures
change system state but return nothing.

All features, even constant or variable attributes, are said to be “called”. This is
perhaps less strange than it might seem, for in Eiffel, a call to a function with no
arguments is written the same as a call to an attribute. If in some class you
write:

that := the.other

the.other may be either a function or an attribute, in this context it makes no
difference.

So, you encapsulate data and the routines that manipulate it in a class.
Assertions, mentioned previously, are also parts of a class and serve to express
class preconditions, constraints and invariants.

Inheritance

The second important idea is inheritance.

Once you have a class, which describes what you know about the how and why
of some sort of object, it may further benefit you to derive a new class from it,
with additions and variations, without touching the program code in the
original class. Inheritance is a mechanism that allows this.

For example, you might derive BEE from INSECT. Many features of BEE would
inherit directly from INSECT, some features would be modified, and BEE would
provide a few new features of its own.

A rule of thumb, called the “is-a” rule, furnishes one way to determine whether
A might usefully inherit from B. Examine the sentence “A is a B”. Does it make
sense? It should if A is a reasonable candidate to inherit from B. For example, “
BEE is an INSECT” passes this test, so BEE might inherit from INSECT. Then,
INSECT will be ancestor of BEE, and BEE will be a descendent INSECT.

The “has-a” rule furnishes a contrast. If “A has a B” makes more sense than “A is
a B”, it may be prudent to let A reference or have a feature of type B, rather
than inheriting from B. “BEE has a STINGER” makes more sense than “BEE is a
STINGER” or for that matter “STINGER is a BEE”. Therefore, class BEE should
have a feature of type STINGER. That makes BEE a client of STINGER, and
STINGER a supplier to BEE.

The client-supplier relationship offers a client less detailed control than a
descendent. A client may use or not use a feature of a supplier, but it cannot
redefine such a feature. Many of a supplier's features may be hidden from a
client, while they will be visible to a descendent. The positive side of this is that
the client will be relatively unaffected by details of a supplier's implementation
and less likely to be impacted by changes in a supplier.

Both client and inheritance relationships can facilitate software reuse. The
traditional function call is more akin to the client relationship, and many
attempts at reuse in the past, prior to object-oriented approaches, have made
use of the function call. However, we still find ourselves writing and rewriting
familiar pieces of functional code too complex to make good candidates for
library routines.

The implementation details of inheritance may seriously affect its suitability as
a mechanism for reuse. In the ideal implementation, problems arising in
descendent classes could always be resolved there. Unfortunately, with many
languages, problems arising in descendent classes require changes to
ancestors.

This becomes more true with multiple inheritance, a technique by which a class
may enjoy, or perhaps not enjoy, multiple ancestors. This technique is a
powerful one, but it is unavailable in many object-oriented languages and
discouraged in most of the rest. Among languages that have reached
commercial viability, Eiffel offers a superior implementation of multiple
inheritance.

Polymorphism

In its broad sense, this indicates a situation where a simple request may elicit
different but not entirely inconsistent responses, depending on the target of
the request. These responses may be arrived at by entirely different means.

For example, you might have classes that look in part like this:

class INSECT
-- Description of a standard -- insect.
 ...
feature flee is
 do
 -- How a standard
 -- insect flees.
 ...
 end; -- flee
end

class BEE
inherit INSECT
 redefine flee
 end;
 ...
feature flee is
 do
 -- How a bee flees.
 ...
 end; --flee
end
class COCKROACH
inherit INSECT
 redefine flee
 end;
 ...
feature flee is
 do
 -- How a cockroach flees.
 ...
 end; -- flee
end

class WATERBUG
inherit INSECT
 redefine flee
 end;
 ...
feature flee is
 -- How a water bug flees.
 ...
 end; -- flee
end

Then, you might have examples of BEE, COCKROACH, and WATERBUG bound to
references of INSECT:

-- Define references to an
-- INSECT and to a BEE.

 insect:INSECT;
 bob:BEE;

-- Bind some particular
-- insect to the reference

 insect := bugs.get

-- Now you have a BEE, a
-- COCKROACH or a WATERBUG.
-- Make it flee after its own
-- fashion, be it that of BEE,
-- COCKROACH, or WATERBUG.
-- This is a polymorphic call,
-- as the code executed will
-- depend on the type of the
-- object bound to insect.

 insect.flee;

-- You can't make a WATERBUG
-- collect pollen.
-- For this you need a BEE, and
-- a trial assignment is
-- available to assign objects
-- that might conform to the
-- type of a reference.

 bob ?= insect;

-- Then maybe you can make bob
-- the bee collect pollen.
-- If he isn't a BEE or a
-- conforming type, bob is Void.

 if bob /= Void then
 bob.collect_pollen
 end;

Another sort of polymorphism, sometimes called parametric polymorphism, is
supported in Eiffel as genericity.

The final sort of polymorphism I'll mention is found as function overloading in
other languages. Here, a function may be defined multiple times, with different
types and numbers of arguments. When the function is called, the actual
function invoked depends on the argument list.

Function overloading is not implemented in Eiffel. Workarounds are present,
and arithmetic operations are handled as special cases, but the general case of
function overloading is felt by the designers of Eiffel to be too full of potential
ambiguities, type-checking failures, complications, and interactions to be
worthwhile just now. A lively thread on this topic is seen from time to time on
the newsgroup comp.lang.eiffel.

Multiple Inheritance

Multiple inheritance is a big win under Eiffel. If you have dealt with this in other
languages you may be surprised. Multiple inheritance entails many sticky
problems, including name collisions and complications of repeat inheritance,
and in most other languages is best avoided whenever possible.

When two classes inherited by common descendent have different features of
the same name, a name collision obtains.

When a feature is inherited more than once from a common ancestor along
two or more inheritance paths, you have repeat inheritance. This may cause a

name collision and also raises practical problems, such as which repeated
feature to use in a polymorphic call.

Most object-oriented languages do not attempt multiple-inheritance. The
literature is full of elaborate explanations why. This is sad. Eiffel demonstrates
that multiple inheritance need not be difficult or complex, and it can also yield
some quite practical results.

Eiffel provides an implementation of multiple inheritance which minimizes the
adverse effects of name collisions and repeat inheritance complications. As is
typical in Eiffel, the solution to one problem helps solve another problem. In
Eiffel, a name inherited from an ancestor may be revised in a descendent using
a rename clause. Eliminating name collisions then merely involves giving a new
name to one or both of the colliding features. The feature is unaffected, except
that it is known in the renaming class and any descendents of that class by its
new name.

Supposing we have a class named SOME_OTHER that inherits two entirely
different features both called put from two ancestors named FIRST_CLASS and
BOWSER:

class SOME_OTHER inherit
 FIRST_CLASS
 rename
 put as first_put
 end;
 BOWSER
 rename
 put as bowser_put
 end;
 ...
end

then in some client class we may have feature what_now:SOME_OTHER

-- We may invoke the feature
-- named put from either of its
-- originating classes

 what_now.first__put(this);
 what_now.bowser_put(that);

Repeat inheritance is only slightly more complex. In the simple case, repeat
inheritance is just a by-product of the class inheritance structure you have
chosen. Perhaps some of the classes inherited from the class library have
common ancestors—this is almost certain. Your responsibility is easy: do
nothing. The compiler eliminates the duplicates, and your class has only a
single copy of each inherited feature, regardless of how many different ways a
feature might come to be present.

In the less common situation, you might want two copies of a feature, for
instance put, from an ancestor. A class fragment exhibiting this situation might
look something like this:

class SOME_OTHER
 inherit
 FIRST_CLASS
 rename
 put as first_copy
 select
 -- Resolve an ambiguity.
 first_copy
 end;
 FIRST_CLASS
 rename
 put as second_copy
 end;

The select clause serves to resolve an ambiguity. Suppose you reference an
object of type FIRST_CLASS and you happen to invoke a feature known in
FIRST_CLASS as put.

SOME_OTHER inherits FIRST_CLASS twice, and because of the renaming, there
are two possible answers to the question, “What is the name of put in
SOME_OTHER?” The following code fragment illustrates:

-- Declare a reference of type FIRST_CLASS
-- then attach an object of type SOME_OTHER,
-- a descendent of type FIRST_CLASS, using a
-- creation procedure of SOME_OTHER called "make"

 this:FIRST_CLASS;
 !SOME_OTHER!this.make;

-- When you try to invoke put,
-- without select it is not clear what you mean.
-- Could mean first_copy, could mean second_copy.

 this.put;

The select clause removes the ambiguity by saying, “When invoking this
duplicated feature under its ancestral name, select this copy.” Note that Eiffel
brings a thorny problem, repeat inheritance, to the resolution you might hope
for. Duplicates are simply eliminated, with no further intervention. If you wish
to duplicate-a much less common situation—you can do this using quite simple
syntax. Finally, features of the same name that are distinct may be renamed so
that both are available, or the unwanted feature may be undefined. pb In each
case, the mechanisms provided are simple and local to the class where the
problem arises. No revisions to ancestors are required. This is no accident. A
major thrust in the design of this language was to eliminate the occasions for
revisions to ancestors. Reuse is served here by localizing any adaptations
required by repeat inheritance and name collisions in the class where they are
encountered. The ancestors are not broken, so they require no fixing. If they
are not fixed, they will not have bugs introduced, and other clients or
descendents of the ancestor classes will not be affected by changes, bug-

inducing or otherwise, that might otherwise be required in the absence of
suitable means to resolve conflicts in the descendent.

Genericity

Suppose you need a class to manipulate a structured collection of objects—an
array of INSECTs, a parse tree, a hashed list of sales prospects, or some such
thing?

Some object-oriented languages furnish a general approach. You construct a
template for, say, a LINKED_LIST or an ARRAY. You then use this template with
some arguments indicating the classes to be used in constructing the particular
LINKED_LIST or whatever.

In Eiffel, this capability is called genericity, and the templates are generic
classes. As usual, this is done in a way that does the job and yet is so simple, it
seems effortless.

Suppose you are writing an ant hill. First you need some ants.

class ANT
 inherit INSECT
 -- A basic ant. It has features to crawl,
 -- forage, dig, tend the young, and so on.
 ...
end

class CARPENTER_ANT
 inherit ANT
 redefine
 -- Redefine some things.
 -- These chew on your house and your apple
 -- tree.
 ...
 end;
 ...
end

class ARMY_ANT
 inherit ANT
 redefine
 -- These are always on the go.
 -- You hope they don't stop by your place
 -- for dinner.
 ...
 end;
 ...
end

Now you are ready for ant hills. Let us suppose you already have some class
that models insect societies. Its header might look like this

class INSECT_SOCIETY[G->INSECT]
 ...

which indicates that an INSECT_SOCIETY may be formed using a parameter that
conforms to INSECT. Loosely, this means any descendent INSECT will do.

anthill:INSECT_SOCIETY[ANT] declares a reference to an INSECT_SOCIETY

containing ants. This reference may then be attached an INSECT_SOCIETY

containing CARPENTER_ANT, ARMY_ANT, or any other descendent of ANT we
have defined. In fact, this allows us to reference an anthill comprising more
than one kind of ant, which is convenient, as some anthills may contain more
than one kind of ant.

In writing a specific container class, for example, we may wish to take
advantage of things we know about insects in the features of the container
class. It would never do, in such a situation, for example, to enter an object of
class DOG or HAMMER into this container. The type-safe mechanism for doing
this is called constrained genericity and is illustrated above in the header line
for class INSECT_SOCIETY.

Summary

The Eiffel programming language offers power, simplicity, strong type checking,
and numerous other amenities. With an open specification for both the
language and the kernel libraries, and support from multiple vendors, Eiffel
now stands poised to take off.

According to one vendor, most interest lately has come from people who are
turning to Eiffel having used C++ for some years and who have become
convinced that the training costs and the complexity of that language are not
justified by the features provided.

The more adventurous among us who have a thirst to tackle an object-oriented
programming language unhindered by excess baggage from the past ways of
doing things may wish to further explore this language.

In my next article, I'll write more about ISE Eiffel and the compiler and tools
from Tower Technology of Austin, Texas. I'll also offer a few thoughts about
how to get started with this language.

Dan Wilder has been employed as a software engineer since 1975. Dan resides
in Seattle, where he divides his time between work, family, and a home Linux

system. Any time left is spent ignoring the moss collection his neighbors think
he calls a lawn. He can be reached via e-mail as dan@gasboy.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:dan@gasboy.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/014/toc014.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Review: xBASE Products for Linux

Robert Broughton

Issue #14, June 1995

Some Linux aficionados would lke to run their DOS-based xBASE database
under Linux. Robert Broughton examines two products that make this possible.

XBASE is a generic term for implementations of what was originally the dBASE
programming language. The principal players in the MS-DOS portion of this
market are FoxPro (Microsoft), dBASE V (Borland), and Clipper (Computer
Associates). It is a language which has statements normally found in
programming languages, like IF, ELSE, ENDIF, and WHILE. (There is a GOTO
statement, but it is for going to a specific record in the file; There is no GOTO in
the FORTRAN flow-control sense.) It also has some powerful statements for
processing files and getting data from screens. Setting up relations between
files is easy to do. The names of all fields in a file, and their types and lengths,
are recorded in the file header. New fields can be added to a file without
changing programs which use the file.

None of these products are available for Linux, although there has been at least
one effort to make the SCO version of dBASE V work with iBCS. What we have
instead is FlagShip from multisoft Datentechnik GmbH and dBMAN from
Versasoft Corporation. Both of these products run on several implementations
of Unix; dBMAN also runs on MS-DOS.

These two products resemble each other only at the very simple level. To start
with, FlagShip is patterned after Clipper version 5, while dBMAN resembles
dBASE III+ or FoxPlus, with some enhancements. This, in turn, means two
things. FlagShip, like Clipper, is a compiler, while dBMAN is primarily an
interpreter, although it is possible to “compile” dBMAN programs (though not
into binaries). FlagShip is also an object-oriented language, which makes it
philosophically different from dBMAN, as well as from FoxPro and dBASE.
Clipper and FlagShip have a lot of C-like features, which I suspect won't be a
problem for most Linux users.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Their target markets are also different. dBMAN is targeted primarily at
individual users. If you want a program you can run on your desk to keep track
of time billed to clients, or that will maintain a data base of customers or your
inventory, dBMAN will do the job, but FlagShip might be overkill. FlagShip is
aimed at people who want to develop or port software packages.

I consider four features to be essential for developing decent user interfaces:
pull-down menus, windowing, hot-key activated selection lists, and input
validation. These products were evaluated with these criteria in mind. I'm also
in awe of FoxPro's BROWSE command, so it's the standard by which I measure
the browse features of other languages.

FlagShip

As I mentioned previously, FlagShip is a compiler. It translates the xBASE code
into C, and the result is turned over to the gcc compiler. (Yes, you can link
functions written in C or assembler into FlagShip programs. You can even mix
xBASE and C code in a program.) The compiled binaries may be distributed
without paying royalties to multisoft.

FlagShip has no equivalent of the “dot prompt” or interactive command
interface found in other xBASE products. However, there is a public-domain
program in WorkGroup Solutions' FTP area named dbu . This program will
provide the capability to create files and indexes, add, change, or locate
records, and browse files.

Figure 1

The FlagShip feature I like best is its on-line reference program called fsman.
fsman contains the entire FlagShip manual, over 1,000 pages worth of material.
If you use an X-window environment, you can easily park fsman in one corner
of your screen, and refer to it whenever necessary. It's also possible to save
pages of the manual to ASCII files, which makes it easy to incorporate
programming examples in the manual into whatever program you are working
on at the time. Of course, you could also use the mouse to copy text from
fsman into your program.

When you install FlagShip, you get a set of terminfo files specifically for
FlagShip. Because of a problem with ncurses 1.8.5, they are compiled with
ncurses 1.8.1.

FlagShip doesn't have a function specifically for managing pull-down menus.
What FlagShip and Clipper programmers normally do is use @PROMPT/MENU

TO statements to create the horizontal menu, and use a function called
ACHOICE() for the vertical menus.

https://secure2.linuxjournal.com/ljarchive/LJ/014/1083f1.jpg

FlagShip has functions for managing windows that work very nicely, but they're
not part of the basic package. You have to buy the FStools library. As the name
suggests, the FStools library is a clone of the Clipper Tools library. There are
also windowing functions in the NanForum library, which is public domain.

Hotkeys are set up with the statement SET KEY keyid TO statement. Normally,
statement would be a function invocation. Within this function, you can call the
function READVAR() to find out which field the cursor was in when the key was
pressed.

An input field can be validated by adding the VALID statement parameter to the
@SAY/GET statement. Again, the statement would normally be a function
invocation. Within the function, the value the user typed in could be looked up
in a database file.

To determine how compatible FlagShip is with Clipper, I downloaded a couple
of programs from a local BBS. I ran into two problems. The programs contained
function calls that looked like this:

IF (expr, true_result,)

FlagShip complained about the absence of the third parameter. Adding “.f.” for
the third parameter solved the problem. The other problem was a reference to
a function named FT_Shadow(), which FlagShip simply doesn't know about. I got
rid of this problem by commenting it out. Once I got clean compiles on these
programs, they worked beautifully.

A key feature of FlagShip is the TBROWSE() object. You use this in place of the
BROWSE command that exists in other xBASE languages. If you don't have any
previous experience with object-oriented programming, setting up TBROWSE()

for the first time is intimidating. However, I was able to get it to do what I
wanted by extracting the example in fsman and rearranging it.

I encountered one problem with FlagShip when I was running a FlagShip
program in an xterm; I got hieroglyphics instead of line drawing characters.
Fiddling with the “acsc” parameter in the “fslinxterm” terminfo entry had no
effect whatsoever. I worked around this by using the “vga” font that comes with
DOSEMU. I eventually learned that instead of using the acsc parameter,
FlagShip uses another file named Fschrmap.def which maps the character
codes generated by the program to the character codes displayed on the
screen. I didn't bother to alter this, however. Using the “vga” font is actually a
better solution, because it's possible to display double line drawing characters.

Another “gotcha” in FlagShip turned up when I put a REPORT EDIT statement in
a program; The compiler rejected it. It seems that this statement just doesn't
exist in the Linux version. REPORT FORM will work if you have an MS-DOS
version of Clipper around to set up a report. REPORT EDIT does exist in other
implementations of FlagShip, and I've been told by WorkGroup Solutions (the
North American agent for FlagShip) that it will be in the next Linux release.

Another problem had a number of people scratching their heads for a while.
ACHOICE() and several other functions were simply refusing to work. It turned
out that the name of my program was browse.prg, and browse is treated as a
reserved word by FlagShip. I can report that the support people at multisoft
and WorkGroup Solutions were reasonably helpful in resolving this problem.

WorkGroup Solutions is very aggressive at marketing their product. (They also
sell a Linux CD-ROM.) They turn up quite frequently in the
comp.language.xbase and comp.os.linux.misc newsgroups. They promise that
FlagShip will eventually have some sort of GUI support. Programs that have
been ported, or are in the process of being ported to FlagShip include:

• Accounting for Clipper--A demo version can be found in WorkGroup
Solutions' FTP site, but it's considered alpha

• SBT--A MAJOR accounting package
• SourceMate--Another accounting package
• Comix--A library to handle FoxPro-style compound indexes
• BandIt--A report writer
• SoftCode--A program generator
• xPRINT--A printer control library
• NanForum Kit--A widely used function library

WorkGroup Solutions also happily points out that FlagShip programs could be
attached to WWW pages, making it possible for net surfers to access and
update databases.

dBMAN

dBMAN functions primarily in interpretive mode, although it is possible to
compile programs. (Compiling a program does not produce an executable
binary; It produces a .run file, which still requires dBMAN to execute it.) When
dBMAN starts up, a CMD: prompt appears at the top of the screen. At this
point, you can type in ASSIST, which starts up a menu-driven interface similar to
ones available with FoxPro or dBASE, but limited in comparison; dBMAN's
ASSIST only allows one file to be open at a time, which in turn means that it is
not possible to set up relations. It is possible to start up a simple program
generator from ASSIST. Again, it has a single file limitation.

It is also possible to enter CREATE REPORT or MODIFY REPORT at the CMD:

prompt. This will put you in dBMAN's report writer, which works very nicely.
The report writer allows relations. I had a little bit of trouble getting it to write a
report with lines wider than 80 columns, but I eventually got it to work.

dBMAN provides a function called PMENU() to create pull-down menus. PMENU

doesn't have any mechanism for temporarily disabling a menu choice.

dBMAN handles windows differently from other xBASE products. Prior to
defining a window, you call PUSHWIND() to push the current window onto a
stack. (When a program is in its initial state, the entire screen is considered to
be a window.) You then call WINDOW() to create the window. When you are
finished with it, you call POPWIND(), which removes the window, and makes the
previous window active.

dBMAN allows you to define only one hot key. You do so by invoking the
ONKEY() function. This will have no effect until you execute the statement ON

KEY statement. (statement will normally be DO hot-key-handler.)

The BROWSE Command has a long list of options. You can browse only certain
fields, and you can specify the width of each field, and whether it is editable.
The list of fields can include fields in other files, which is great if you have
relationships set up.

dBMAN does not use either termcap or terminfo. Instead, it includes a file
named dbmterm.dbm. It looks a lot like termcap. The first problem I had to
solve after installing dBMAN was that there were no entries for either “xterm”
or “console”.

I created one for color xterms without a whole lot of difficulty, and it is included
in Listing 1.

dBMAN has no facility for executing functions written in C or assembler.

There were a couple of nasty bugs in the version of dBMAN I evaluated, which
was 5.32. The main one was that procedure files simply didn't work if the
procedure file was a .prg. If you compiled it into a .run file, it worked OK.

A Benchmark

I put together a simple benchmark program, which can be found in Listing 2.

The test file I used contained 33,830 records. I ran the benchmark with dBMAN
(compiled and non-compiled), FlagShip, and FoxPro 2.0 under MS-DOS. The
benchmark was done on a 66MHz 486 with a SCSI disk. Here are the results. At

https://secure2.linuxjournal.com/ljarchive/LJ/014/1083l1.html
https://secure2.linuxjournal.com/ljarchive/LJ/014/1083l2.html
https://secure2.linuxjournal.com/ljarchive/LJ/014/1083t1.html

first glance, you might conclude that both dBMAN and FlagShip were blown out
of the water by FoxPro. This would be unfair. FoxPro generally beats similar
MS-DOS products in benchmarks, because FoxPro, by design, grabs all
resources it can find. No well-behaved Linux program would do this. To put it
another way, dBMAN and FlagShip would run a lot faster if they allocated most
of the 16 megabytes of memory on my machine, but someone doing text
editing on another terminal would see their performance suffer.

Compatibility

xBASE files always have separate data (.dbf) and index files. The format of data
files is pretty much uniform for all xBASEs, but as far as I know, no two xBASE
products use the same index file formats. I was able to use the same .dbf files
with FlagShip and dBMAN, but I haven't tried any memo fields yet. (Memo fields
put free-form text into a separate file, usually with the .dbt extension.)

Resources

Robert Broughton (a1040@mindlink.bc.ca) has been developing software for 23
years, and has been using Linux since February, 1993. He is employed by Zadall
Systems Group, in Burnaby, BC, Canada.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/014/1083s1.html
mailto:a1040@mindlink.bc.ca
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/014/toc014.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Review: Intelligent Multiport Serial Boards

Greg Hankins

Issue #14, June 1995

Comtrol, Cyclades, DigiBoard, and Stallion boards are tested in Linux Journal's
hardware review. If you need more serial ports than you currently have, read
on.

If you are planning on supporting a cluster of terminals, a modem pool for a
BBS, a SLIP/PPP server, or a UUCP site, you might find yourself quickly running
out of serial ports. Standard PC serial ports are limited to four ports, so chances
are if you need more than four ports you may be considering buying multiport
boards. There are many factors to consider when adding multiport serial
boards to your machine. As modems get faster and faster, I/O throughput has
become an increasingly important factor. It's also important to consider CPU
usage when adding a large number of ports. As you add more ports, the host
CPU will have to spend more time doing serial I/O.

“Baud vs. bps”

There are two basic types of serial boards: “UART-based” (Universal
Asyncronous Receiver Transmitter) and “intelligent”. Standard PC serial boards
(COM1-COM4) typically come with 8250 or 16450 UARTs with a one-byte
transmit and receive FIFO (buffer), or 16550A UARTs with sixteen-byte transmit
and receive FIFOs. Boards such as the Boca 2016 and the AST Fourport use
these types of UARTs in a multiport board configuration.

Most of these types of boards are supported by the standard Linux serial
driver, since they all use the same types of UART and I/O technique. Due to
limited FIFO size, and the fact that all character processing must be done by the
host CPU, a UART-based serial board might not be sufficient to provide the I/O
power you need, for example, to drive a high-speed modem bank.

Table 1. Supported Multiport Serial Cards

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/014/1097s2.html
https://secure2.linuxjournal.com/ljarchive/LJ/014/1097t1.jpg

This is where the intelligent multiport serial boards are useful. These boards
have serial port controllers with larger FIFOs and with some sort of
“intelligence”, such as RISC UARTs with some character recognition and flow
control logic. Some may even have a CPU of their own to handle serial I/O.
Since these boards vary in chipsets and control logic, a driver must be written
for each board for use with Linux. With the old tty driver (which provides the
abstract, general handling for all terminal devices, including serial, console, and
pseudo-tty's), support for intelligent multiport boards was nearly impossible.

In the 1.1 Linux development kernel, Ted Ts'o (the maintainer of the serial
driver and the tty driver) rewrote the generic tty driver to allow support for
many kinds of serial devices, improving the serial drivers in the process. Since
then, several drivers for intelligent multiport boards have been written, and
more are being developed. In this issue, I'll be reviewing 8-port intelligent serial
boards supplied by four manufacturers: Comtrol, Cyclades, Digi International,
and Stallion Technologies. For vendor contact information, please see the
Vendor Contact Information. Now let's look at each board in detail.

Hardware Features

The following 8-port serial boards were sent to me for review. It should be
noted that many other models of the boards, with different port configurations
and I/O capabilities, are supported under Linux in addition to the ones I
reviewed. A list of supported boards can be found in table 1. In the Control
Signals column of table 1, MC stands for “RS232 modem control” and HWC
stands for full “RS232 hardware flow control”. In the Max speed column, all
figures are in bps.

Comtrol RocketPort RA 8

The RocketPort RA (Remote Access) 8 series of boards features two 36 MHz
ASICs (Application Specific Integrated Circuits) with 256-byte transmit FIFOs and
1024-byte receive FIFOs for each port, and built in flow control and line
discipline handling. The ASICs also handle other functions, such as the bus
interface logic and other miscellaneous logic, significantly reducing the number
of components on the board.

RocketPort RA 8 boards support full RS232D modem and hardware flow control
signals at speeds up to 230.4 Kbps. Four RocketPort RA 8 boards can be
installed in one system. The first requires a 68 byte I/O address range, and each
additional board requires a 64 byte I/O address range. I/O address ranges are
selectable from 0x100, 0x140, 0x180, 0x200, 0x240, 0x280, 0x300, 0x340, 0x380
and are set with a DIP switch. No IRQ is needed for any of the boards. The
driver comes in the form of a loadable module and is supported by Comtrol.
The RocketPort RA 8 series features the RocketPort RA Octacable, which

https://secure2.linuxjournal.com/ljarchive/LJ/014/1097s1.html

includes an octopus cable with DB25 connectors, at US $499.00, and the
RocketPort 8 RA, which includes a connector box with DB25 connectors, is
priced at US $678.00.

Cyclades Cyclom-8Y

The Cyclom-8Y series of boards features two 12.5 MHz Cirrus Logic CD-1400
RISC UARTs. The CD-1400 UARTs handle flow control and special character
recognition and also have 12 byte transmit and receive FIFOs, as well as a
holding and shift register for each port. The Cyclom-8Y boards support full
RS232C modem control and hardware flow control signals (except for the
Cyclom-8Ys, which have no RTS signal) and will support speeds up to 115.2
Kbps. Each Cyclom-8Y board needs one interrupt (IRQ) selectable from 5, 9, 10,
11, 12, and 15, and an 8K block of dual-ported RAM selectable from
0xA0000-0xEE000. Both IRQ and I/O address are set with a DIP switch on the
board. Four boards can be used simultaneously, each requiring its own IRQ and
I/O address.

The driver for the Cyclom boards is included in kernel sources starting with
version 1.1.74 and newer. The Cyclom-8Y boards are supported by Cyclades,
which was the first company to offer a vendor-supported driver for an
intelligent multiport board under Linux. There are four 8-port models in the
Cyclom-8Y line: the Cyclom-8Ys with on-board RJ12 connectors (no RTS signal),
at US $459.00; Cyclom-8Yo with an octopus cable with DB25 connectors, priced
at US $511.00; and the Cyclom-8Yb and Cyclom-8Yb+ with DB25 connectors in
an external box (the Cyclom-8Yb+ also has surge protection), at US $599.00 and
US $699.00, respectively.

DigiBoard PC/8e

The DigiBoard PC/8e board is driven by an 12.5 MHz Intel 80186 CPU to handle
I/O processing. It also uses 64K on-board RAM for data buffering. Seven PC/8e
boards can be used in one system, each requiring one four-byte I/O address
selectable from 0x100, 0x110, 0x120, 0x200, 0x220, 0x300, and 0x320 with a
DIP switch. The nice thing about this board is that the DIP switch is located on
the back of the card, so you can see and change the I/O address without
opening your computer. An 8K block of dual-ported RAM is also required, but
this can be shared among all boards. This address is selectable from
0xC0000-0xEFFFF by the PC/8e driver. No IRQ is required.

PC/8e boards support RS232C full modem and hardware flow control signals at
speeds up to 115.2 Kbps. The driver for this board is supported by Troy De
Jongh (an employee of DigiBoard), not by DigiBoard. The PC/8e host adaptor is
US $795.00 plus US $90.00 for a DB25 connector octopus cable, US $110.00 for
a DB25 connector box, or US $110.00 for an RJ45 connector box.

Stallion EasyIO/8, and EasyConnection 8/32

Stallion boards employ the same CD-1400 RISC UARTs as the Cyclades boards,
with the same features. There are two models of the Stallion 8-port boards: the
EasyIO/8, and the EasyConnection 8/32 modular board. Both boards need an 8
byte I/O address, selectable from 0x200-0x3FF with a DIP switch, and an IRQ
selectable from 3, 4, 5, 7, 10, 11, 12 and 15, with the driver. The IRQ can be
shared by all boards on an EISA bus machine. The EasyConnection 8/32 board
needs an additional 32-byte secondary I/O address, selectable from
0x200-0x3FF via the driver, also sharable among all EasyConnection 8/32
boards. Any combination of four EasyIO/8 and EasyConnection 8/32 boards are
supported by the driver.

EasyIO/8 boards offer 8 RS232C serial ports at speeds up to 115.2 Kbps, with
full modem and hardware flow control. EasyConnection 8/32 boards offer 8-32
ports supporting RS232D full modem and hardware flow control signals at
speeds up to 115.2 Kbps and, optionally, RS422A signals, also at 115.2 Kbps.
The EasyConnection 8/32 is offered with 8 or 16 port modules, which can be
used in any combination together to form a 32 port module. Each module has
its own CD-1400 chips to support the ports on that module. The modules are
nicely made and also have wall mount brackets on the back. The driver for this
series of boards is supported by Greg Ungerer (an employee of Stallion), not by
Stallion. The EasyIO/8 is available with a DB25 connector octopus cable, or an
RJ45 connector box for US $595.00. The EasyConnection 8/32 host adaptor is
US $300.00. Eight-port modules are priced at US $595 for RS232 connector
boxes with RJ45 or DB25 connectors, and US $795.00 for a RS232/RS422 DB25
connector box. Sixteen-port modules with RJ45 connectors cost US $845.00,
and 16-port modules with DB25 connectors are US $945.00.

Common Features

Several common features were shared among all products:

• All manufacturers offers five-year warranties and 30-day money-back
guarantees.

• The ISA/EISA buses are the only bus types supported, although support
for PCI cards is in progress by some vendors.

• Everyone was extremely helpful; even the people who support the driver
in their spare time were very responsive.

Usability Testing

All boards were installed and worked flawlessly following the documentation
that was included with the drivers. Each board was used in my system for over
a week, supporting my UUCP feed. I also did testing with interactive login

sessions, file transfers, and dialup PPP connections with my V.34 modem. No
problems were encountered with any of the boards during this usability testing
phase. Dumb terminals were simulated by interconnecting cables on the serial
boards. Again, no problems were encountered.

Performance Benchmarks

Unfortunately, benchmarking is a necessary evil for hardware reviews. You just
can't judge hardware by its looks, no matter how pretty it is.

Benchmarking is somewhat of a black art. It is possible to tweak benchmarks to
produce very biased test results to highlight particular features of a product. I
have no connection to any vendors, so my tests are not biased by personal or
professional concerns. Also, some benchmarks (such as the ones I did) don't
exactly portray real-world situations, but they do provide some sort of
performance measurement.

Table 2. Performance

Because of resource limits, I was simply unable to acquire the massive amount
of equipment needed to accurately simulate, for example, 8 dialup PPP
connections. This would have required 9 computers, 16 high speed modems, 8
phone lines (or another way of connecting the modems), and^well, you get the
idea. So, keep all this in mind while reading these benchmarks, and take them
with a grain or two of salt.

The most interesting statistics are:

• I/O throughput--how many characters are sent and received;
• CPU overhead--how much of the host CPU is consumed doing the I/O.

Only system time is counted, not user time, because it is the efficiency of
the kernel driver and hardware that is being measured.

The ideal board gives the highest throughput with the lowest CPU usage.

Testing Platform

All tests were done on a generic PC, with an Intel 486DX33 CPU and 256K cache,
16MB RAM, and an ISA bus, running Linux 1.2.0. Benchmark tests were done in
single user mode, with a minimally configured kernel, to ensure that other
program activity would not skew the test results.

https://secure2.linuxjournal.com/ljarchive/LJ/014/1097t2.jpg

Benchmarking Software

The software I used is called tbench. It was developed by engineers at
DigiBoard, with enhancements made by engineers at Stallion. I consider the
benchmarking software to be reasonably unbiased, due to the fact that it was
developed by two competitors, and the fact that it is used by yet other
competitors (such as Comtrol) indicates that they concur. Further modifications
were made by Stallion engineers for Linux, to adapt the software to use
setserial in order to use higher speeds with the serial ports. The tbench
software is in the public domain.

You can get the version of tbench I used at ftp://ftp.cc.gatech.edu/pub/people/
gregh/review, along with the full test results. The original version of tbench is
available at ftp://ftp.digibd.com/pub/tbench.

Output Tests

The tbench output tests write data to combinations of ports ranging from one
port to all 8 ports. The data is written to the output port set as fast as possible,
without flow control, to provide a steady stream of data. The data consists of
six-digit numbers with checksums. 100K of data is written to each port. Each
output test was run three times, and the results were averaged to eliminate any
inconsistencies.

There are two sets of test results: “raw” (-opost) and “cooked” (opost) I/O
results. It's important to distinguish which types of activity uses which type of I/
O mode. Interactive login sessions use cooked mode for I/O, while programs
such as file transfer programs, SLIP, PPP, and UUCP do raw I/O. Cooked I/O is
slower, because each character must be examined to see if it's a special
character, such as ^C or ^Z. In addition, some editing of the line is done. Of
course, this takes more CPU overhead. In raw I/O mode, there is no need to
examine each character, because all 8-bit combinations are considered to be
valid data, and no characters are specially processed.

Output Test Results

Under ideal conditions, the actual character per second (CPS) output will be the
serial port speed divided by ten. Each character transmitted is 8 bits plus a start
and stop bit, hence we device the speed by ten. Output tests were done at
9600, 38400, 57600 and 115200 bps, each in both raw and cooked mode. The
raw output data was compiled into graphs for each speed, showing the CPS
throughput on one to 8 ports and the CPU usage on one to 8 ports (see page
50).

Comtrol RocketPort RA 8

This board truly lives up to its name. The RocketPort gave a very solid
performance across all ports and at all speeds, even at 115.2 Kbps. CPU usage
in raw and cooked mode were the lowest of all boards, except at 115.2 Kbps
(where the throughput was still the highest). Throughput ranked near the top at
all speeds, sometimes getting slightly less than the Stallion board, and was the
absolute best by a margin of 500-1100 CPS at 115.2 Kbps.

Cyclades Cyclom-8Yo

The Cyclom-8Yo gave a somewhat lower performance than the equally-
equipped Stallion board. The throughput was nearly always lower, and the CPU
usage nearly always higher, compared to the competitors, except at 115.2 Kbps
in cooked mode, where the Cyclom bested all boards in CPU usage (but not in
throughput) at a surprisingly low 44%. A new version of the driver has been
released, in which the CPU handling is improved, but we were unable to test it
in time for publication. Throughput also varied irregularly with different port
configurations.

DigiBoard PC/8e

The performance of this board was poor at high speeds. CPS throughput was
acceptable at 9600 bps, and at 38400 bps in raw mode. At 38400 bps in cooked
mode, throughput degraded quickly as more ports were tested. However, Digi
does state in their sales literature that 38400 bps is the maximum usage rate
for an 8 port board (even though you can run the rate up to 115.2 Kbps) so the
results weren't all that surprising. At all speeds, the CPU usage in cooked mode
was unusually high, and at high speeds, the board ground the CPU to a
screeching halt. In raw mode, CPU usage was actually quite good, but the
throughput degraded to unacceptable levels at speeds greater than 38400 bps.

Stallion EasyIO/8

Because of the design similarity of the EasyIO/8 and EasyConnection 8/32, and
the fact that my tests on the EasyIO/8 were very close to similar tests done by
the driver's developer on an EasyConnection 8/32, the EasyConnection 8/32
was not benchmarked. It is reasonable to assume that results for both boards
will be nearly identical in an 8 port configuration.

Overall, the EasyIO/8 did quite well. Throughput at 9600, 38400 and 57600 bps
was comparable to the Comtrol RocketPort, sometimes winning by a slight
margin. Even at 115.2 Kbps, the board performed quite well in throughput,
although CPU usages were higher than the RocketPort's at all speeds.
Compared to the Cyclades board, which uses the same UART technology, the

EasyIO/8 did higher throughput and generally used less CPU time, except at
115.2 Kbps. The driver must be amazingly tuned to get such high throughput
with 12 byte FIFOs. CPS throughput did begin to vary slightly at 115.2 Kbps, but
remained steady at other speeds.

Input Tests

Input tests are much harder to do than output tests. Output tests only require
one computer, and it's not even necessary to connect any cables. To do input
tests properly, you need more equipment. Two computers are needed, each
equally equipped and each with the same serial board, of course. These two
systems must then be cabled together. One system is then designated as the
“producer” system and outputs data, while the other system is designated the
“consumer” system and inputs data.

Unfortunately, we lacked sufficient resources to do a good job at this, and so
the input tests that were run do not give a worthwhile and reliable indication of
the cards' capabilities. We do not want to give questionable test results due to
less-than-ideal test conditions, so input test results are not reported here. In
future reviews, perhaps we will be able to do meaningful input tests; please tell
us if you would find this useful.

Conclusion

1) How much performance do you get for your money?

Throughput and CPU usage are important statistics to consider, besides the
price. The Comtrol RocketPort RA boards are hard to beat, both in price and
performance. They have the lowest price if you buy the octopus cable version
of the board and offer the best overall performance. However, using the
connector box makes the RocketPort less price-competitive. The Stallion boards
are not bad performance-wise, but the EasyIO/8 is slightly more expensive than
the Cyclades and Comtrol boards. The EasyConnection 8/32 is also slightly
more expensive, but is a modular board, so the higher price is to be expected.
Cyclades boards are quite competitive in the price ranges and are consistently
lower-priced than the similar Stallion, but their performance is also slightly
lower. The DigiBoard PC/8e is expensive, and performed poorly in our tests. We
can only recommend using this board if you have already purchased it.

2) Who supports the driver?

And who can you call when it won't work and you've tried everything? If you are
worried about having someone that absolutely has to listen to and fix your
problem, then Comtrol and Cyclades have what you need. Cyclades has been
backing their Linux drivers for their Cyclom line of boards for almost a year

now, and Comtrol is very eager to support their hardware under Linux. In fact,
while doing my benchmarking with the Comtrol driver, I discovered a serious
performance problem at high speeds. After I contacted the Comtrol engineer
with my problem, he immediately began to examine the driver code and
confirmed my suspicions. Later that afternoon, he found the driver problem. I
had a fixed version of the driver by the next day.

Even though the other engineers and sales personnel at Digi and Stallion were
very helpful, there is no substitute for technical support backed by the vendor.

Resoures

General information on setting up serial devices, such as terminals and
modems, can be found in the Serial-HOWTO, available at http://
sunsite.unc.edu/mdw/

HOWTO/Serial-HOWTO.html on the Web. Plain text and PostScript versions can
be found at ftp://sunsite.unc.edu/pub/

Linux/docs/HOWTO and also at the many sunsite mirrors.

In real life, Greg is an aspiring young sysadmin at Georgia Tech's College of
Computing. In his spare time, he maintains the Linux Serial-HOWTO and
coordinates the HOWTO project. He has been running Linux for over two years
now. Comments are welcome via e-mail at greg.hankins@cc.gatech.edu.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://sunsite.unc.edu/mdw
http://sunsite.unc.edu/mdw
mailto:greg.hankins@cc.gatech.edu
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/014/toc014.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Linux at the UW Computer Fair

LJ Staff

Issue #14, June 1995

This year, our booth was one of the most popular booths.

On March 15 and 16, 1995, the University of Washington had its twenty-first
annual Computer Fair in Seattle. In 1973 it was called the Terminal Fair
because, after all, people couldn't afford computers back then. Now this has
grown to an event with around 16,000 attendees ranging from students to
Boeing and Microsoft engineers.

SSC, publishers of Linux Journal, has had a booth at the fair for the past four
years. In 1991 and 1992, SSC's booth with Unix products was not very popular
among attendees compared to the other booths with mostly Windows and MS-
DOS products. In 1993, we saw increased interest in our booth. Last year, in the
Spring of 1994, we gave away several hundred free copies of Issue 1 of Linux
Journal, we talked to hundreds of interested people about Linux.

This year, our booth was one of the most popular booths. One SSC employee
(biased, we admit) claimed that only one booth at the show was more popular
than SSC's booth, and that was the Starbucks Espresso booth. (For those not
familiar with Seattle's reputation, it prides itself on the number of quality
espresso stands and is called “latte-land” by some. Allegedly, Seattle consumes
more coffee than any other city in the world, save Milan, Italy.)

This year, we gave out 4000 copies of Linux Journal and had hundreds of
people enter their business cards in our drawing for an Essential Linux Pack.
The winner of the Pack was Don Herold of North Bend, Washington.

Common questions asked while in the booth were:

• How big a machine do I need to run Linux? Most people were surprised to
find out machines much smaller than what are needed to run MS-
Windows will support Linux just fine.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

• Will Linux run my DOS or (MS-Windows) programs? Most people were
happy with a “yes” to the first question and seemed to settle for “maybe
sometime soon” for the second part.

• What does Linux cost? “Nothing” was a surprising answer for many.
Handing them an SSC catalog that includes various CD distributions, as
well as instructions on where and how to get Linux off the Internet,
seemed to get people thinking that Linux for free is a reality.

• Does Linux run on a Mac? Not a really popular question but when we
explained to people that Mac programs can run on Linux (with the
addition of Executor) these people seemed very surprised.

In addition to the booth, Phil Hughes, publisher of Linux Journal, spoke to a
packed auditorium of 500 people. Phil's talk followed an IBM presentation on
OS/2 Warp which, while well-attended, was not a full house.

Phil abandoned the more traditional marketing-oriented talk and, instead,
presented a Question and Answer talk where he supplied the questions. When
asked the reason for this type of talk he responded, “Most people interested in
Linux don't need a sales pitch. They just want to know what it is and if it will do
what they need done. If it does, it will sell itself.” The large crowd at the Linux
Journal booth following the talk indicated that Phil was right.

On Monday, March 20, the Seattle Linux Group met at SSC's offices. Prompted
by the publicity at the UW Computer Fair, 58 people attended, up from the
more typical 15-25 people. One person at the meeting told the group that he
had not really been thinking about Linux but after talking to us at the Fair, he
purchased a CD and installed it over the weekend. He was very pleased with
the results.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/014/toc014.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Linux at COMDEX/Fall

Mark Bolzern

Issue #14, June 1995

Linux International, Linux Journal, and WorkGroup Solutions have arranged for
Linux to have a major presence there. But, there is a problem. We need help.
This show is bigger than any of us.

COMDEX/Fall is America's largest computer trade show. It usually has 200,000
attendees, and worldwide is second in size only to CeBit in Hanover, Germany.
Traditionally, COMDEX is largely for resellers of computer technology, and is the
show most often selected by major vendors for important product
announcements. Many successful products trace their early launch to COMDEX
Fall.

Linux International, Linux Journal, and WorkGroup Solutions have arranged for
Linux to have a major presence there. But, there is a problem. We need help.
This show is bigger than any of us.

We would appreciate it if any Linux enthusiasts going to COMDEX, or living
within driving distance of Las Vegas would volunteer their help.

We need 3 things to pull this off:

• Companies to take (and pay for) booths in the Linux Showcase area on the
show floor. Contact Richard Kazarian at SoftBank, (617) 449-6600, and tell
him that you want to be part of the Linux Showcase. Also, please let me
know that you are participating. If you cannot take a booth, then become
a corporate sponsor for Linux International, (www.li.org for info) and bring
your literature to distribute in LI's booth. Better yet, volunteer to help man
LI's booth, and present LI and your product, too.

• Volunteers to submit papers for sessions they would like to present in the
conference track that is being planned. Any subject is good, from “My first
experience with Linux”, “How my company uses Linux”, to technical

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

subjects on the design of the kernel, how to configure networking, etc.
Virtually any subject is fair game. Please do not be shy about suggesting
subjects. The range of people attending will be from people who have
never heard of Linux to some of the few experts that actually exist. Your
name and session information will be printed in the show conference
guide, possibly your picture published, and you can use this as an
impressive reference for any future resume, work or presentation you do.
Volunteering gets you free admission to all conference sessions and the
show floor, if your suggestion is accepted. Unfortunately, we cannot pay
for travel expenses for anyone.
You may note that, of all things, OSW (Open Systems World, in
Washington D.C.) and COMDEX are the same week. For those people who
would like to be present at both shows and end up in Vegas for a party
weekend, Phil Hughes, publisher of Linux Journal, and I are arranging
sessions at OSW the first part of the week, and at COMDEX the second
half.

• Volunteers are needed to help in Linux International's booth, and possibly
the booths of Linux Vendors who request it. Also, volunteers are needed
to hand out literature to draw people to the Linux Showcase area.
Volunteering gets you free admission to the show floor where the vendors
are.

If this is handled well, this one event could serve to launch Linux into
commercial acceptance. Please help us make Linux known as THE OS, and THE
Revolution.

• For papers, offers of help, or questions, please write to: Mark Bolzern at
shows@wgs.com.

• For information on COMDEX/Fall in general, contact Steve Engle or
Richard Kazarian at SoftBank, (617) 449-6600, and tell them how excited
you are that COMDEX/Fall will have a substantial Linux Focus, and that
this is the reason you will attend (if true).

COMDEX/Fall will be held in Las Vegas, Nevada, USA, November 13-17, and it
takes over the entire town. There are lots of parties, free food, give-aways and
fun for all. If you have never been at COMDEX (everyone should do it at least
once in their lives), be warned—you are likely to run into any of the people
whose names you regularly see in print, from Gates to journalists. You may
even speak with them. See you there.

Archive Index Issue Table of Contents

 Advanced search

mailto:shows@wgs.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/014/toc014.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

 Advanced search

Interview with Mark Bolzern

Linux Journal Staff

Issue #14, June 1995

Mark Bolzern talks about a recent trip spent promoting Linux and Flagship, the
product he sells for Linux and other Unix-like systems.

Mark Bolzern is the President of WorkGroup Solutions, Inc, a company selling
the FlagShip CA-Clipper language product, and is also a board member of Linux
International. When we heard that he was taking a tour promoting Linux, we
asked him to share that experience with our readers.

LJ: I understand that you just completed a tour to promote Linux and FlagShip.
Where did you go?

Mark: I started with the CA-Clipper Users' group in Detroit. I then went to
Boston and met with magazine editors out there, including Byte, Information
Week, and a few others. I also met with several well-known industry analysts
while I was there. My next stop was Cleveland for a presentation to the Greater
Cleveland Clipper Users' group. Then I went to Chicago and spent time
educating our PR firm on Linux. The last leg included presentations to Clipper
users' groups in St. Louis, Jefferson City, and Kansas City. The whole trip took
about 3 weeks. I drove my van rather than attempting to fly, because of the
equipment I had with me, and because the plane schedules were such that it
would have been a lot more hassle to fly.

LJ: Were these normal users' meetings that you attended, or did you do
anything special to bring in other users?

Mark: I had my PR firm put on radio spots and local newspaper and magazine
ads. These drew additional people in. Mailings were also done.

LJ: How many people did you introduce Linux to on this tour?

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Mark: Hundreds of people saw Linux for the first time, were impressed, and
then mobbed me with questions. I purposely did not sell any Linux CDs on this
tour, but I gave away quite a few as door prizes. In fact, here is a quote from
Mark Schumann, President of the Cleveland group. He e-mailed it to me after I
left.

It was nice having you around Cleveland this week. I
have to say, Mark, that this is the first GCPCUG Clipper
meeting in many months that generated as much
excitement among attendees. We've had better
attendance at times, and also much worse, but not
often do people come and watch and think and mob
the speaker as they did this week. Nice going!

LJ: What did your presentation to these groups consist of?

Mark: I had a Pentium 90 running WGS Linux Pro and a big monitor with me. I
showed them DOOM, fvwm, Workman playing music from CD, and lots of other
things going simultaneously. I also compiled FlagShip programs at the same
time and showed off some converted Clipper programs. I waxed eloquent on
how Linux is “Unix: The Next Generation”, and why Linux and whatever
Microsoft does may be the only operating systems within 5-10 years. I
presented a history of the computer industry and the role Unix has played. I
also drew analogies to other events in human history that happened for the
same reasons that Linux is going to. If you think Linux is something now, “you
ain't seen nuthin' yet!” True revolutions have always had to sneak in through
the back door. Heck, that is exactly how PCs and PC LANs got to where they are
now. The established powers virtually never see the revolution till it is too late.
Look what IBM's own problem child, the PC, did to them! From #1 in computers
& mainframes to being a “me too” clone company, all because they never really
understood it. When I worked for IBM, I asked if I could work with the PC
shortly after it came out. I recognized the PC as a revolution in the making. IBM
told me the PC would never be a mainstream product. They said if I wanted to
work with it, I'd have to transfer to Computerland or IBM's factory in Boca
Raton. I quit and went to Computerland.

LJ: What is your “WGS Linux Pro”?

Mark: It is a CD containing the Slackware Linux distribution, along with a
number of additional things drawn from the Internet. WGS is specifically
targeting the commercial market that present Linux vendors have had difficulty
moving into. We provide quality and assurance, not necessarily the latest code.
We do not feel that we compete with the InfoMagics, Slackware Pros, and
Yggdrasils of the world. We are after people who develop commercial software
for commercial use. These are the people who want FlagShip. In the meantime,
our PR benefits the entire Linux community. I would wager that all CD-ROM

vendors have sold more CDs since we started our activities, partially due to
these very activities. I would like for all CD-ROM vendors to have our FlagShip
Test Drives and information on their CDs.

LJ: What is CA-Clipper, and what did you present specifically to its users on this
tour? How many Clipper users are there?

Mark: There are over 200,000 CA- Clipper users and programmers in the US
alone. If you add the similar Fox and dBase products, there are well over 10
million. Clipper is a very popular applications development language
worldwide; in fact, it is even more popular outside the US than inside. Just as
Cobol is the legacy language to mainframes, CA-Clipper is the legacy language
for business applications on the PC. There are millions of business software
packages written in it. But Clipper is far more than just a legacy language, it is
still a concept leader. Clipper started as a way to compile dBase III programs
and then began to add features and functions. When Clipper 5 was released, it
was the first seriously object-oriented language for creating business
applications. It is now one of the very best languages for developing character-
based data-oriented applications. It allows fast prototyping, simultaneously
creating robust and easy to maintain code. The programs created can be
distributed completely royalty free and with no runtime module necessary.
There is a large community of developers of add-on tools and products for
Clipper—as many vendors as probably for any other development tool. There is
much more information I could pass on, but people can feel free to check out
our FTP site for further information, URL ftp://ftp.wgs.com/pub2/wgs/Filelist, or
write info@wgs.com. They could also pose questions on the
alt.comp.databases.xbase.clipper Usenet forum or the CompuServe Clipper
Forum, or call Computer Associates (CA) for information on Clipper.

LJ: FlagShip is CA-Clipper for Unix?

Mark: Yes, call CA and mention Clipper and Unix in the same sentence. They will
send you to WGS. When people mention a DOS version of FlagShip to us, we
first try to sell them Linux and, if it doesn't work, we send them to CA for
Clipper. So, in summary, FlagShip is an implementation of CA-Clipper for Unix
and there is a Linux version of FlagShip at DOS-level pricing. CA-Clipper has
been the dominant language for writing and distributing business applications
on DOS, so that means Linux and commercial applications usage could merge
at light speed! Millions of applications, no muss, no fuss. Lack of a good,
inexpensive, royalty-free business applications language and its resulting
applications has held the use of Unix back seriously in most businesses. And
products like Oracle, Informix, Sybase etc. are far too expensive. [Read the
review of FlagShip and dBMAN in this issue of Linux Journal—ED]

mailto:info@wgs.com

LJ: Why do you call Linux “Unix: The Next Generation”?

Mark: I explained that a bit in my editorial last month, A new project or a GNU
project? You can look at it this way. Unix is very modular, with the basic
concepts being standard in, standard out, and standard error. These are the
interfaces used to build a modular operating system in good building block,
Lego style. So it is possible, even easy, to replace pieces of Unix as needed. The
GNU project of the Free Software Foundation has been around a long time. It is
mostly made up of enhanced and bug-fixed replacement utilities for Unix. Over
the years, a lot of Unix manufacturers have shipped a lot of broken things, and
this simultaneously made the GNU project necessary and possible. As a result,
when the Linux Kernel came along, most of the Next Generation Unix was
already waiting. Voilá, what we know as Linux. Linux is not new; only the kernel,
the assemblage and the name are new. Linux is the result of a generation of
bug fixes and enhancements by many very astute technical people, not the
least of whom is Linus Torvalds. There is another way to look at it, too. The
Internet was built primarily on Unix systems and various utilities that were
added to Unix such as TCP/IP. Linux was built largely on the Internet, a child of
the Internet, if you please. So Unix, and the Internet are parents of Linux
—“Unix: The Next Generation”.

LJ: I noticed that you said earlier that you think Linux may be one of only two
operating systems within 5-10 years. Why do you think that?

Mark: Hardware manufacturers used to compete with one another by getting
the job done better for customers and by trying to create more powerful
systems. Then they started doing operating systems software, programming
languages, and applications software. Soon language vendors and applications
software companies were born because no one manufacturer could do it all.
Unix has now been adopted by almost all manufacturers because their own
proprietary OS development cannot keep up. The bigger the manufacturer, the
longer it took them to come around. The natural next step is for the OS to
become totally independent of hardware manufacturers. There are 4 choices:
Unix, Linux, OS/2, and whatever Microsoft does. I list Linux separately because
it carries the spirit of Unix forward better than any other implementation. Of
the options, Linux actually has the most development resources and a
cooperative development environment. In addition, all companies and people
have equal access to Linux. Microsoft has more money than the Linux people
do, but anytime people are hired for pay and position, rather than for the love
of it, there end up being many distracting political hassles. Most Linux people
are in it because it is art to them. Neither UnixWare nor OS/2 have these
advantages, and as such, are behind. POSIX is a committee standard and Linux
may become its best implementation in all respects very soon. DEC's interest
with Alpha machines is a good example of this. I think that as Linux gets more

capable, stable, user friendly, easy to install, and has applications available, it
may actually take over as the primary OS for all hardware manufacturers,
specifically because of its independence. It may become the primary target
platform for all applications developers that do not want to compete with
Microsoft on Microsoft's own turf (OS). Linux should not be called a free
operating system, it should be called a priceless operating system.

LJ: Thank you very much for taking time for this interview.

Mark: My pleasure.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/014/toc014.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Caldera and Corsair

LJ Staff

Issue #14, June 1995

Who is Caldera, and what is Corsair, really?

Many conflicting rumors about Novell's “Corsair” project have been floating
about the Internet. Recently, there have been sensationalized stories that Ray
Noorda, formerly the President and Chief Executive of Novell, is backing a
company called Caldera to use the “Corsair” technology to take Microsoft on
head-to-head. While that makes for an interesting story, at Linux Journal we
prefer facts to hype. Here is Caldera's story.

Who is Caldera, and what is Corsair, really? Corsair was—and still is—a project
at Novell to create a “desktop metaphor” for the network. A year or so ago at
Novell, an advanced technology group was doing research on how to better
and more easily integrate and manage network access for users, and they
decided to focus on the desktop. While they liked Unix, they wanted something
smaller and faster to put their “Internet desktop” on, (not to mention
something requiring a smaller royalty stream than Unix—yes, Novell pays
royalties to other companies that developed parts of Unix).

Several members of the group became convinced that Linux was the best
answer to their search. They started to work with Linux, contributing code back
to the Linux development team and to other projects related to Linux, including
the Linux DOS emulator. Their work included work on the IPX networking layer
of Linux, support for the Wine project, and several other smaller parts.

When Robert Frankenberg took over the CEO position at Novell in 1994, he cut
out many of the exploratory projects that were then underway in an attempt to
focus Novell on “core competencies”. While many in the industry lauded this, it
did end all of the work on Linux-related features of Corsair, and Corsair now is
an “Internet desktop” for MS Windows.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Several of the members of the group were not satisfied with this, and quit to
form their own company, with financial and strategic backing from Ray Noorda,
to continue working on this desktop—under Linux. This new company is
Caldera.

Myths Debunked

Caldera's product is not an MS Windows clone, as some have reported. It will
include an MS-Windows-like API, licensed from Willows Software, which is
another Noorda-backed company. This will allow companies with MS Windows
applications to port those applications easily to Linux. Caldera does not intend
to have an “ABI” (application binary interface) that is guaranteed to run existing
Windows applications. Because they have worked for a high level of
compatibility at the “API” (application programming interface) level, there is a
high probability that some MS Windows binaries will run, but they say that is
not what they are attempting to accomplish.

Caldera says their product is not intended to be an MS Windows killer: they are
not trying to put Bill Gates out of business. They instead wish to provide an
alternative: a commercially supported distribution of Linux bundled with
commercial components.

Commercial Components

The commercial components, which will require separate licensing, will include
the Windows-like API, the Corsair-like desktop, a netware client, and OpenDoc
support. Truetype font support is also planned. So-called personal productivity
applications will be bundled or sold separately. Caldera-developed
documentation will be included as a part of the product.

While Caldera will be providing many commercial components, they have
publicly promised to fully honor the GNU Public License, including providing full
source code for all the GPL-licensed software they ship. The GPL is what has
made Linux useful to them, and they say that it lowers and removes barriers
for many small companies who want to compete in the software marketplace.
They suggest that Linux will increase innovation in the software marketplace,
and they want to push this along. They quote Ray Noorda as saying, “That's
exactly what we are out to do—to grow [the whole Linux] industry.” Promoting
Linux is good for everyone.

Caldera has instructed their public relations firm to promote Linux, as well as
Caldera, believing that by giving Linux added exposure, the entire market will
grow, benefiting everyone in it, including themselves. In addition, they will
continue to contribute work on free software, doing their part to help keep
Linux innovative and open. When they chose a business partner to build their

distribution, they chose another company that licenses its software under the
GPL, Red Hat Software.

Caldera is not the only company to provide supported, shrink-wrapped
distributions of Linux, nor is it the only company to sell commercial applications
for Linux. Caldera suggests that they have two distinguishing characteristics:
first, they have Ray Noorda behind the company, which gives them credibility
and financial flexibility when they are negotiating with large software
companies; and second, Caldera will focus on helping and encouraging existing
independent software vendors and manufacturers to port their programs to
the Caldera desktop in an attempt to provide types of software that have been
unavailable for Linux in the past.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/014/toc014.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

SlickEdit

Jeff Bauer

Issue #14, June 1995

Jeff gives us a quick introduction to the SlickEdit editor, a small, efficient
programmer's editor which is available on many platforms, including Linux.

MicroEdge, Inc. has released a version of SlickEdit for Linux. SlickEdit is a
character-based programmer's editor running on a variety of platforms and it
should appeal to developers who work in more than one environment. The
current list price is US $195.

For a programmer arriving from a DOS environment, SlickEdit provides a
comfortable transition. Instead of arcane keystrokes and endless keyboard
remapping, the user is presented with an unobtrusive menu system which may
be later discarded. Pressing F1 brings up the help system and the behavior of
particular keys, such as insert and delete, act in the manner to which the DOS
user is accustomed.

SlickEdit can be considered a fairly complete editor in that it provides most of
the features necessary for productive coding. It has full undo and redo
capability, even past successive file saves. Multi-file search and replace is
supported along with regular expression searches. Cut and paste operations
may be performed on marked lines, blocks, and columns. Multiple clipboards of
marked text are maintained. A Rexx-like macro language provides over 850
callable editor functions.

A single diskette installs SlickEdit onto /usr/bin and /usr/lib/slick by default,
consuming about 2Mb of disk space. Less space is necessary if you choose not
to install all the macro files. The SlickEdit executable is only 260K. A 400-page
perfect bound manual is included with the application.

There are three ways you may wish to use SlickEdit on a Linux system: console,
terminal, or xterm. Each has its own peculiarities and you will probably want to
create a separate keyboard description file for each. A key mapping utility

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

called genktab allows you to tell SlickEdit what to expect when a key is pressed.
A readable keyboard description file is compiled into a “.tab” file. Another utility,
showkey, is provided to help you determine what sequences your terminal is
generating.

Most of the common terminal types are included in the default keyboard
description file, including vt100 and xterm. To work with xterm, the file /usr/lib/
slick/xdefault must be appended to the .Xdefaults file in your $HOME directory.
A special xs script is included to avoid the initial configuration hurdles. Under
xterm the window can be dynamically resized with the mouse, but the mouse
cannot be used to manipulate text within the screen. MicroEdge has stated they
intend to add mouse support for Unix in a future version of SlickEdit.

Under console mode, SlickEdit is virtually indistinguishable from its DOS
version. The Alt-F1 thru Alt-F4 keys may need to be remapped to provide
functions such as MOVE-EDGE and DELETE-ADJACENT, since most Linux
systems use these key combinations to provide virtual terminals. You also can
perform these operations from the SlickEdit menu or configure the Alt key for a
non-console terminal as described below.

Setting up a terminal to act the way a normal DOS user expects is challenging,
especially for a text editor. The Alt key has no counterpart with most terminals
in standard use today. MicroEdge works around this problem by defining the
backtick (`) key as the Alt key for a non-console, non-xterm terminal. In practice
this adaptation is easy and natural to use. To enter an actual backtick, a ^Q `

sequence is entered.

Another potential problem with using a terminal is common to many Unix
applications^-namely the confusion resulting in sending an escape sequence
(say, F1 under ANSI emulation) and a literal escape (0x1b) character. This is not
peculiar to either Linux or SlickEdit, but it is more noticeable in text editing
applications where you're likely to be pounding the arrow keys a lot. SlickEdit
attempts to alleviate this by allowing the user to specify a delay for an
ambiguous key sequence. On other Unix systems I have noticed that this is not
always 100% successful, especially if you are running telnet through through
heavily loaded systems. However, my limited use on Linux uncovered no
problems.

If you purchase SlickEdit, you have, at a minimum, two expectations: ease of
use and technical support. After configuration, SlickEdit has very few surprises.
Getting to the point that you are satisfied with your configuration, however,
may require a phone call to Technical Support. My prior experience with
MicroEdge's support has been very good, and this time was no exception.
Basically, I wanted true 8-bit line drawing characters rather than the stodgy

hyphen, plus, and vertical bar (- + |) symbols displayed. My call was returned in
30 minutes. After ascertaining what I needed, the specialist offered to e-mail
me the necessary file, with the assurance that I could call him back if there were
any further problems. My ANSI.DAT file arrived later that day and everything
worked as expected. MicroEdge also supports a CompuServe forum: “go
slickedit”.

My overall impression is that MicroEdge has done an excellent job in porting
SlickEdit to Linux. I have written many lines of code over the past two years with
the SlickEdit family of editors on a variety of platforms. There are certainly
other freeware alternatives to the venerable vi and Emacs editors, but I find my
level of productivity is raised (and frustration lowered) by using SlickEdit.

Resources

MicroEdge, Inc. may be contacted by phone at (800) 934-EDIT or (919) 831-0600,
or by fax at (919) 831-0101, or by mail at P.O. Box 18038, Raleigh, NC 27619
USA.

Jeff Bauer has spent the past 16 years developing health care software. His
current project involves interfacing pen-based computers with Unix systems to
track clinical information.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/014/toc014.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Running Linux

Grant Johnson

Issue #14, June 1995

Running Linux covers everything you need to install, use and understand the
Linux operating system.

• Author: Matt Welsh & Lar Kaufman
• Publisher: O'Reilly & Associates
• ISBN: 1-56592-100-3
• Price: $24.95
• Reviewer: Grant Johnson

There has been an increasing thirst for information about Linux which hasn't
been fully quenched by a book...until O'Reilly & Associates got together with Lar
Kaufman and Matt Welsh, the Coordinator of the Linux Documentation Project
and the author of Linux Installation & Getting Started, to take on this project.
Unostentatiously titled Running Linux, this book is a perfect blend of polished
knowledge, organized in an easy-to-grasp package, like most books in the
O'Reilly line.

Running Linux covers everything you need to install, use and understand the
Linux operating system. This cornucopia includes in-depth installation and
configuration instructions, tutorial and discussion of programming tools for
system and program development, information on system maintenance,
network administration guidelines, and everything in between. The book opens
with an explanation of the GNU General Public License and some background
concepts. It also includes a brief history of the Linux system; starting with the
UNIX operating system that was the inspiration for Linux, then covering its
creation by Linus Torvalds in 1991, on to the present day—or pretty close.

Continuing on, you'll find a comprehensive installation tutorial that leads you
step-by-step through the tedious task of setting up and configuring Linux on
your PC, independent of which distribution you decide to use (although some

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

examples from the Slackware distribution are given). All the basic concepts
relevant to installation are discussed here, and solutions to many common
problems are presented.

Next is a presentation of basic UNIX concepts, most of which are not unique to
Linux, but which you need to know to take advantage of Linux. You don't want
to drive a fancy, powerful operating system without knowing how to shift and
steer it. This chapter teaches you how to shift, steer, stop, and even read maps
and road signs.

Running Linux also provides complete information on Linux system and
network administration. Basic functions such as repairing file systems, installing
software, and administering user accounts are made easy. More advanced
features such as UUCP, TCP/IP, e-mail, SLIP, PPP, and other serial
telecommunications are also discussed. You are even shown how to provide
network services from your Linux machine. This includes a section on
configuring your very own World Wide Web (WWW) server and writing HTML
(Hyper-Text Markup Language) documents for the WWW.

The programming languages and other system tools features in Linux are
thoroughly described in both theory and practice. Among these tools are the
gcc C and C++ compiler, the gdb debugger, perl, Tcl and the Tk toolkit, the
Emacs and vi editors, text formatting systems such as TeX and tools designed
to interface with MS-DOS.

Lastly, Running Linux offers helpful installation and configuration information
to make setting up XFree86 a bit easier. This project alone has been known to
cause rashes and other stress-induced ailments, but reading the keep-it-simple
approach in Running Linux can help keep you healthy...

In short, this book answers the questions the novice users are too afraid to ask,
and the questions gurus won't admit they don't know.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/014/toc014.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Letters to the Editor

Various

Issue #14, June 1995

Readers sound off.

Random Services

I found the article [Setting up Services in the April 1995 issue] interesting. I
think that there was one major point that was missed. Administrators should
not randomly assign ports to services. In fact there is an RFC that lists the ports.
The latest is rfc1700. This is very important for novices to learn.

—Matthew B. Guest mbguest@fastbox.ridgecrest.ca.us

Importance

I agree emphatically with the letter from Graham Leach
(g_leach@pavo.concordia.ca) in the April 1995 issue of Linux Journal. Your
magazine is excellent. But the “linked list” format is annoying. Please avoid it, or
at least minimize it.

I disagree with one of your justifications, namely that readers expect
“important” articles near the front of the magazine. I certainly don't. I would
guess that most of your regular readers, like me, would read each issue cover-
to-cover, and more than once. Perhaps you could poll your readers, to find out
for sure.

As I said, your magazine is superb. But the format makes it difficult to read,
needlessly so.

Regards,

—Carl Renneberg renneber@tmx.mhs.oz.au

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
mailto:mbguest@fastbox.ridgecrest.ca.us
mailto:g_leach@pavo.concordia.ca
mailto:renneber@tmx.mhs.oz.au

Linked Lists again

Just received my first issue of Linux Journal: April. Great!

WRT the split article issue raised by Graham Leach in a letter to the editor, may
I suggest something that worked well for me back in the dark ages of paste-ups:
Instead of “no jumps”, which is really tough, how about a goal of no more than
one jump per article. It would also be helpful to add the article name to the
“continued from...” at the top of jump pages.

Thanks for an interesting, readable book.

—John Miller, N4VU jsm@n4vu.Atl.GA.US

LJ Responds:

We have been discussing this and this issue has a keyword from the article title
added to the “continued from” lines, as you suggest. Also, I agree with the one
jump max rule and we will try for that. From more information on our new
layout, please see Stop the Presses.

Scilab Revisited

I was very pleased to read Robert A. Dalrymple's article on Scilab. I've been
using Scilab for 7 years and I think that it is a terrific product (much more
powerful than Matlab). It's wonderful that INRIA decided to make this tool
available to the public as free software.

My purpose for writing this letter is that I think your readers will be interested
in knowing some additional facts about Scilab which did not come out in the
article. One of the most powerful aspects of Scilab is its ability to easily perform
data abstraction and operator overloading.

Scilab is delivered with several pre-defined abstract data types such as rational
polynomials and linear dynamic systems. Overloading of the usual operators
such as “+”, “-”, “*”, “/”, and “=” allows the user to easily manipulate these
abstract data types and the development of higher level operations is greatly
simplified. Here is an example with two rationals:

^> r1=(2+3*s)/(1+s**2)
 r1 =
 2 + 3s
 ^^^-
 2
 1 + s
 ^> r2=s/(5+s)
 r2 =
 s
 ^^^

mailto:jsm@n4vu.Atl.GA.US

 5 + s
 ^> r3=r1+r2
 r3 =
 2 3
 10 + 18s + 3s + s
 ^^^^^^^^^
 2 3
 5 + s + 5s + s

Notice that even though the rationals in the example are user defined objects,
the overloading of the “=” operator gives rise to a user friendly on-screen
representation which is recognizable as that of a rational. Furthermore since
the “+” operator is overloaded for rationals, their sum is defined and requires
no special function (like r3=poly_add(r1,r2) as an example).

The implementation of the rational abstract data type in Scilab allows all the
usual operations that one would expect between two rationals as well as
between a rational and other data types (such as scalars and matrices).

The user of Scilab can easily define new abstract data types and develop Scilab
macros for the implementation of user transparent operator overloading.
These Scilab features are unique in the Matlab-like class of products and is the
reason for which I believe that Scilab is a much more powerful product than
Matlab.

I hope that these comments will be of use to your readers.

Sincerely,

—Carey Bunks bunks@rechser.total.fr

CORRECTIONS

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:bunks@rechser.total.fr
https://secure2.linuxjournal.com/ljarchive/LJ/014/1101s1.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/014/toc014.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Changes To Linux Journal

Phil Hughes

Issue #14, June 1995

By the time you have reached this page, you may have noticed some changes in
the appearance of Linux Journal. The changes are more than skin deep and, in
this column, I will let you know what is happening.

By the time you have reached this page, you may have noticed some changes in
the appearance of Linux Journal. The changes are more than skin deep and, in
this column, I will let you know what is happening.

The changes have come about both in response to reader feedback and in our
attempt to streamline production of the magazine. Up through issue 11, layout
was done on a contract basis by an outside person. This interface, both
because of the physical location of layout being in a different place than the
rest of magazine production and because there was a Macintosh involved, took
more time and effort than was practical. With issue 12 we started to move
layout in-house and, after a false start or two, we are happy to say all is under
control.

Our new layout person is Amy Wood. She has previously worked for a weekly
newspaper and the biggest problem we have with her is convincing her that
she has a whole month between magazines instead of a week. The layout itself
is still done in Quark XPress but it now runs on an MS-Windows system which is
connected to our Linux network. The actual interface is handled by Samba (see
LJ issue 7 for more info on Samba) and is transparent to Amy. For the rest of us,
it means that files can be sent to and from that system without the need for
sneaker-net. (In a future issue we will have an article on how Linux Journal is
produced using mostly Linux systems.)

Because Amy had so much extra time after finishing up issue 13 she looked at
the assorted comments about our layout and along with her own ideas, came
up with the current layout. The major changes you should notice are a cleanup

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

of the page format and the addition of “continued-from” lines on the
continuation pages of articles which include a keyword so you know what
article you are reading. Also, she is putting a lot of effort into minimizing the
number of jumps within articles. Please let us know what you think of her work.

The second big change is still under way but should be done by the time you
read this. We have established a WWW site, www.ssc.com. As well as having
information on SSC products, we will be putting up information from Linux
Journal. First we will put up the tables of contents and advertisers indices and
then add some of the articles from the magazine. Advertisers can request links
from their index entry to their web page and, if they don't have their own web
site, for a nominal fee we will put their web pages on www.ssc.com. If you are
an advertiser and need more information on this, contact Carlie Fairchild at
(206) 782-7733.

As well as SSC and Linux Journal information, we will have some general Linux
information on the site so if you are looking for something to browse try
www.ssc.com. This is, of course, a Linux machine. If there are things you think
should be added to the site, send e-mail to info@linuxjournal.com.

Finally, with Linux 1.2 out there, more commercial vendors are starting to take
Linux seriously. If you see anyone with a commercial interest in Linux, whether
it is a vendor interested in making their product work with Linux or a company
that is using Linux, please point them our way. The more information of
commercial interest we can get in LJ, the easier it is for us to convince others
that Linux is a viable alternative to other operating systems.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.ssc.com
mailto:info@linuxjournal.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/014/toc014.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

New Products

LJ Staff

Issue #14, June 1995

Metro Link releases Motif 2.0 for Linux, WGS releases Linux Pro 2.2 and more.

Metro Link releases Motif 2.0 for Linux

Metro Link has announced a release of Motif 2.0, OSF's popular graphical user
interface. Metro Link Motif 2.0 is ported specifically for use with the new X11R6
version of the X Window System (XFree86 3.I.I. or higher). For developers, Motif
2.0 makes creation of software applications and custom widgets simple. For
end users, Motif 2.0 improves their interface performance. The virtual screen
support unclutters the workspace by providing alternate locations for chosen
windows, while providing greater consistency with PC environments.

Phone 305-938-0283, fax (305) 938-1982, e-mail holly@metrolink.com. Metro
Link Incorporated, 4711 North Powerline Road, Ft. Lauderdale, FL 33309.

WGS releases Linux Pro 2.2

WorkGroup Solutions has announced the availability of its new Linux Pro v2.2
on CD-ROM. Users can purchase WGS Linux Pro v2.2 on a single CD-ROM for
$19.99, including complete documentation. For more experienced users
interested in the latest Linux features, WGS is offering Linux Pro v2.2 in a 3 CD-
Rom package for $69. This package includes WGS Linux Pro v2.1 on a single CD,
plus two additional CDs that contain images of the tsx-11.mit.edu and
sunsite.unc.edu ftp sites. Users who purchase the $69 package have access to
comprehensive technical support and receive a WorkGroup Solutions Linux Pro
T-shirt.

Contact WorkGroup Solutions on the Internet at World Wide Web address URL:
ftp://ftp.wgs.com/pub2/wgs/Filelist, via e-mail at info@wgs.com, fax (303)
699-2793, phone (303) 699-7470.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
mailto:holly@metrolink.com
mailto:info@wgs.com

Mazama Packet Filter

Mazama Software Labs, Inc. has released the Mazama Packet Filter, an easy to
install and configure firewall that requires virtually no maintenance. The
Mazama Packet Filter filters incoming and outgoing IP packets based on
human-recognizable rules. This allows filtering TCP/IP services such as
incoming and outgoing ftp, http, gopher, finger, telnet, etc. Specific filter rules
based on any TCP/IP packet attributes can be added via the X-based user
interface. The Mazama Packet Filter will be generally available on April 15th, at
an introductory price of US$750.

Phone (206) 545-1808, e-mail info@mazama.com, on the WWW, please visit the
URL http://www.mazama.com/ Mazama Software Labs, 15600 NE 8th St., Suite
B1 #544, Bellevue, WA 98008.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:info@mazama.com
http://www.mazama.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/014/toc014.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Upgrading the Linux Kernel

Mark Komarinski

Issue #14, June 1995

For those who have hesitated to upgrade to the new stable Linux version 1.2,
Mark explains how to easily upgrade from version 1.0 (or any subsequent
version) to version 1.2 -- and even gives you a little help.

With the release of Linux 1.2.x, there have been a lot of questions on the
newsgroups asking what needs to be done to upgrade a stable 1.0.x system to
a stable 1.2.x system. Fortunately, this is relatively easy and painless.

One thing you should note is that you should upgrade to the 1.2.1 kernel,
especially if you are using firewall software. Version 1.2.0 was somewhat
broken in this respect.

The first thing you should realize is that a new program, bdflush, is required by
the 1.2.x kernel. The program arrived early in the 1.1.x series and replaces
update, implementing a style of disk caching that is a bit more efficient than the
older style. Without this program, your disk caching will not work as well, and
you will be warned: “Warning - bdflush not running”.

The networking tools should also be upgraded. The new versions have been
upgraded to support improvements in the kernel networking code. Do note
that normal networking programs do not need to be upgraded; only a few
special programs, included in a single kit, are affected by the changes.

I have built a package that includes all of these programs. It's called “The Linux
Upgrade 1.2”, in a file called linuxupgr-1.2.tar.gz. It is available at
sunsite.unc.edu and its mirrors in /pub/Linux/system/, and at tsx-11.mit.edu
and its mirrors in /pub/linux/binaries/sbin/. Download this package along with
the version 1.2.1 kernel, which should be available nearby in the file
linux-1.2.1.tar.gz. Sunsite and its mirrors have the kernel in /pub/Linux/kernel/
v1.2/, and tsx-11 and its mirrors have the kernel in /pub/linux/sources/system/
v1.2/.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Upgrading Your Kernel

1. Back everything up! Back up your system just in case of any problems
along the way. In case anything goes wrong, you can always go back to a
stable system. At least back up your data files.

2. Make notes about your system. The kind of filesystems you have, extra
cards, sound card information, and so on.
From this point on, you should be the root user with few users logged on.

3. Move the linux kernel tar file to the /usr/src directory. mv linux-1.2.1.tar.gz

/usr/src

4. Back up the old kernel by moving its directory tree to a directory with
another name. For example, if the old kernel is a 1.0.9 kernel, you can (in
the /usr/src directory) mv linux linux-1.0.9. This way, you still have the
source to the old 1.0.9 kernel available.

5. Uncompress and untar the kernel file by running tar xzvf linux-1.2.1.tar.gz

You should see a list of files being sent to the screen. They should all
begin with “linux/”.

6. Change to the linux directory and run make config. You will be offered
options, for which you will need the information you collected from step
2. In many cases, you can take the defaults, unless you have a specialized
system. Issue 7 of Linux Journal had an article, “Linux Performance Tuning
for the Faint of Heart”, which specifically covers how to compile new
kernels.
One specific item that is not covered in that article is the new IDE driver in
Linux 1.2. In the Linux kernel source, there is a file drivers/block/
README.ide that you should read if you have a large IDE drive, multiple
IDE controllers, or ATAPI IDE CD-ROM drives. Nearly everyone will want to
answer “Use new IDE driver for primary/secondary [interface]” with yes.
The only reason not to is if you use MFM or RLL drives, since the new IDE
driver supports only IDE drives.

7. Once the configuration is ready, make the dependencies needed by gcc to
build the kernel correctly. Run make dep.

8. At this point, if you're using lilo, you can run make zlilo and the makefile
will automatically begin building the kernel and installing the new kernel
in LILO. If you boot off a floppy drive, you can just run make zdisk, and put
a blank formatted 1.4 (or 1.2) MB disk in the drive and makefile will build
the kernel and install it on your floppy.
NOTE: My preference is to install first to a diskette, and boot from that. If
there are no problems, then I go back and run make zlilo. Another option
is copying the current Linux kernel to another filename (such as
vmlinuz1.0.9) and making a new LILO entry for that file. If you reboot with
the first kernel and have problems, you can reboot again, get into LILO,

and boot the older kernel. If you feel comfortable using LILO, this may be
easier for you.

9. You will also need to tell the kernel file to mount the root device read-only
so that it can run fsck if necessary. If you're using a floppy, run rdev -R /

dev/fd0 1. If you're using LILO, run rdev -R /vmlinuz 1. Using the capital R
here is important. If you are using LILO, another option is to use the read-

only option for the boot image. This is covered in the excellent LILO
documentation.

10. Once the kernel is built, install the Linux Upgrade Package. From /usr/src,
run tar xzvf linuxupgr-1.2.tar.gz. This will create a directory called upgrade
which has the bdflush and other assorted files in it. Read the README file
for instructions on installing the upgrade files.

11. Reboot the machine. If you did everything correctly, you should have a
successfully running 1.2.1 kernel. If you do run into problems and you are
using a floppy disk, you can pop the floppy out of the drive and reboot
with the old kernel.

Misc. Other Upgrades

There are a few other packages you may want to upgrade at this point. Among
them are gcc, libraries, and the X Window System. However, the old versions
will work with the newer kernels, and upgrading is not necessary for running
Linux 1.2.1.

If you have any comments about this article or suggestions for future articles,
please e-mail me at komarimf@craft.camp.clarkson.edu

Mark Komarinski graduated from Clarkson University (in very cold Potsdam,
NY) with a degree in computer science and technical communication. He now
lives in Troy, NY, spending much of his free time working for the Department of
Veterans Affairs where he is a programmer.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:komarimf@craft.camp.clarkson.edu
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/014/toc014.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

The Linux keyboard driver

Andries E. Brouwer

Issue #14, June 1995

Our Kernel Korner series continues with an article describing the linux
Keyboard driver. This artilce is not for “Kernel Hackers” only—in fact, it will be
most useful to those who wish to use their own keyboard to its fullest potential,
and those who want to write programs to take advantage of the many features
in the Linux keyboard driver.

When you press a key on the console keyboard, the corresponding character is
not simply added to the tty (generic terminal handling) input buffers as if it had
come in over a serial port. A lot of processing is required before the kernel
knows what the correct characters are. Only after processing can the generic
tty code, which handles all interactive terminal devices, take over.

Roughly speaking, the picture is this: the keyboard produces scancodes, the
scancodes are assembled into keycodes (one unique code for each key), and
keycodes are converted to tty input characters using the kernel keymaps. After
that, the normal `stty' processing takes place, just as for any other terminal.

Scancodes First

The usual PC keyboards are capable of producing three sets of scancodes.
Writing 0xf0 followed by 1, 2 or 3 to port 0x60 will put the keyboard in scancode
mode 1, 2 or 3. Writing 0xf0 followed by 0 queries the mode, resulting in a
scancode byte 0x43, 0x41 or 0x3f from the keyboard. (Don't try this at home,
kids. If you are not very careful, you will end up in a situation where rebooting
is the only way out—and control-alt-delete will not be available to shut the
computer down correctly. See the accompanying listing of kbd_cmd.c for
details.)

Scancode mode 2 is the default. In this mode, a key press usually produces a
value s in the range 0x01-0x5f and the corresponding key release produces
s+0x80. In scancode mode 3, the only key releases that produce a scan code

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/014/1080l1.html

are of both Shift keys, and the left Ctrl and Alt keys; for all other keys only the
key presses are noted. The produced scancodes are mostly equal to those for
scancode mode 2.

In scancode mode 1 most key releases produce the same values as in scancode
mode 2, but for key presses there are entirely different, unrelated values. The
details are somewhat messy.

A program can request the raw scancodes by

ioctl(0, KDSKBMODE, K_RAW);

For example, X, dosemu, svgadoom, and showkey -s do this. The default
keycode translation mode is restored by

ioctl(0, KDSKBMODE, K_XLATE);

See the keyboard FAQ (in kbd-0.90.tar.gz) for some advice about how to get out
of raw scancode mode from the shell prompt. (At a shell prompt the
commands kbd_mode [-s|-k|-a|-u] will set the keyboard mode to scancode
mode, keycode mode, translation (`ASCII') mode and Unicode mode,
respectively. But it is difficult to type this command when the keyboard is in raw
scancode mode.)

Scancodes to Keycodes

Life would have been easy had there been a 1-1 correspondence between keys
and scancodes. (And in fact there is, in scancode mode 3, but that does not
suffice for Linux, since X requires both the key press and the key release
events.)

But as it is, a single key press can produce a sequence of up to six scancodes,
and the kernel has to parse the stream of scancodes and convert it into a series
of key press and key release events. To this end, each key is provided with a
unique keycode k in the range 1-127, and pressing key k produces keycode k,
while releasing it produces keycode k+128. The assignment of key codes is in
principle arbitrary (and has no relation to the key codes used by X), but at
present the key code equals the scan code for those keys that produce a single
scancode in the range 0x01-0x58.

The parsing works by

• recognizing the special sequence 0xe1 0x1d 0x45 0xe1 0x9d 0xc5
produced by the Pause key

• throwing out any fake Shift-down and Shift-up codes, inserted by the
keyboard to make the kernel believe that you pressed Shift to undo the
effect of NumLock

• recognizing scancode pairs 0xe0 s
• recognizing single scancodes s.

Since s can take 127 values (0 is a keyboard error condition, and the high order
bit indicates press/release) this means that parsing could result in
1+127+126=254 distinct keycodes. However, at present keycodes are restricted
to the range 1-127 and we have to work a little to make things fit. (No doubt
sooner or later keycodes will be integers instead of 7-bit quantities, and the
keymaps will be sparse, but for the time being we can avoid that—since to my
knowledge no actual PC keyboard has more than 127 keys.) So, there are small
tables that assign a keycode to a scancode pair 0xe0 s or to a single scancode in
the range 0x59-0x7f. In the default setting everything works for most current
keyboards, but in case you have some strange keyboard, you can get the kernel
to recognize an otherwise unrecognized key by filling an entry in these tables
using the KDSETKEYCODE ioctl; see setkeycodes(8).

Two keys are unusual in the sense that their keycode is not constant, but
depends on modifiers. The PrintScrn key will yield keycode 84 when combined
with either Alt key, but keycode 99 otherwise. The Pause key will yield keycode
101 when combined with either Ctrl key, but keycode 119 otherwise. (This has
historic reasons, but might change, to free keycodes 99 and 119 for other
purposes.)

At present there is no way to tell X about strange key(board)s. The easiest
solution would be to make X use keycodes instead of scancodes, so that the
information about strange keys and the scancodes they produce is located a
single place.

A program can request to get keycodes by doing

ioctl(0, KDSKBMODE,
K_MEDIUMRAW);

For example, showkey does this. Warning: the details of the function of both
the KDSETKEYCODE ioctl and the K_MEDIUMRAW keyboard mode are likely to
change in the future.

Keymaps

Keycodes are converted to keysymbols by looking them up on the appropriate
keymap. There are eight possible modifiers (shift keys), and the combination of
currently active modifiers and locks determines the keymap used.

Thus, what happens is approximately:

int shift_final = shift_state ^ kbd->lockstate;
 ushort *key_map = key_maps[shift_final];
 keysym = key_map[keycode];

The eight modifiers are known as Shift, AltGr, Control, Alt, ShiftL, ShiftR, CtrlL
and CtrlR. These labels have no intrinsic meaning, and the modifiers can be
used for arbitrary purposes, except that the keymap for the Shift modifier
determines the action of CapsLock (and that the Shift key partially suppresses
keyboard application mode). By default Shift is bound to both Shift keys and
Control keys and Alt and AltGr are bound to the left and right Alt keys. The
remaining four modifiers are unbound in the default kernel. X is able to
distinguish ShiftL and ShiftR, etc.

Thus, there are 256 possible keymaps—for plain symbols, for Shift+symbol, for
Ctrl+AltL+Shift+symbol, etc. Usually, not all of the keymaps will be allocated
(combinations with more than three modifiers are rather unusual), and in fact
the default kernel allocates only 7 keymaps, namely the plain, Shift, AltR, Ctrl,
Ctrl+Shift, AltL and Ctrl+AltL maps. You can allocate more keymaps simply by
filling some of their entries using loadkeys(1).

Key # symbols

Key symbols are shorts, i.e., they consist of two bytes. In Unicode mode, this
short is just the 16-bit value returned—or, to be precise, the returned byte
string is the UTF-8 representation of this Unicode character. The keyboard is
put into Unicode mode by

ioctl(0, KDSKBMODE, K_UNICODE);

When not in Unicode mode, the high order byte is viewed as a type, and the low
order byte as a value, and we do:

type = KTYP(keysym);
 (*key_handler[type])(keysym & 0xff, up_flag);

The type selects a function from the array key_handler:

static k_hand key_handler[16] = {
 do_self, do_fn, do_spec, do_pad, do_dead,
 do_cons, do_cur, do_shift, do_meta, do_ascii,
 do_lock, do_lowercase, do_ignore, do_ignore,

 do_ignore, do_ignore
 };

1. do_self, commonly used for ordinary keys, just returns the given value,
after possibly handling pending dead diacriticals.

2. do_fn, commonly used for function keys, returns the string
func_table[value]. Strings can be assigned using loadkeys(1).

3. do_spec is used for special actions, not necessarily related to character
input. It does spec_fn_table[value]();, where

static void_fnp spec_fn_table[] = {
do_null, enter, show_ptregs, show_mem,
show_state, send_intr, lastcons, caps_toggle,
num, hold, scroll_forw, scroll_back, boot_it,
caps_on, compose, SAK, decr_console,
incr_console, spawn_console, bare_num
 };

The associated actions (and their default key binding) are:
◦ Return (Enter): return a CR and if VC_CRLF mode set also a LF. One

sets/clears CRLF mode by sending ESC [20 h or ESC [20 l to the
console.

◦ Show_Registers (AltR-ScrollLock): print the contents of the CPU
registers.

◦ Show_Memory (Shift-ScrollLock): print current memory usage.
◦ Show_State (Ctrl-ScrollLock): print the process tree.
◦ Break (Ctrl-Break): send a Break to the current tty.
◦ Last_Console (Alt-PrintScrn): switch to the last used console.
◦ Caps_Lock (CapsLock): toggle the CapsLock setting.
◦ Num_Lock (NumLock): in keyboard application mode: return ESC O

P; otherwise, toggle the NumLock setting. One sets/clears keyboard
application mode by sending ESC = or ESC > to the console. (See also
Bare_Num_Lock below.)

◦ Scroll_Lock (ScrollLock): stop/start tty—roughly equivalent to ^S/^Q.
◦ Scroll_Forward (Shift-PageDown): scroll console down.
◦ Scroll_Backward (Shift-PageUp): scroll console up. These two

functions are implemented by using the memory on the video card,
and provide only a very limited scrollback facility. Moreover, all
scrollback information is lost when you switch virtual consoles. So,
for real scrollback use a program-like screen.

◦ Boot (Ctrl-AltL-Del): reboot. If you press Ctrl-AltL-Del (or whatever key
was assigned the keysym Boot by loadkeys) then either the machine
reboots immediately (without sync), or init is sent a SIGINT. The
former behavior is the default. The default can be changed by root,
using the system call reboot(): see ctrlaltdel(8) and init(8).

Some versions of init change the default. What happens when init
gets SIGINT depends on the version of init used—often it will be
determined by the pf (stands for powerfail) entry in /etc/inittab,
which means that you can run an arbitrary program. In the current
kernel, Ctrl-AltR-Del is no longer by default assigned to Boot, only
Ctrl-AltL-Del is.
Sometimes when init hangs in a disk wait (and syncing is impossible)
it can be useful to say ctrlaltdel hard, which may allow you to force a
reboot without power cycling or pressing the reset button.

◦ aps_On (none): set CapsLock.
◦ ompose (Ctrl-.): start a compose sequence. The two following

characters will be combined. This is a good way to get accented
characters that you only rarely need. For example, Ctrl-.><,><c will
produce a c-cedilla, and Ctrl-.>:<a><e the Danish letter æ. Precisely
which combinations combine to what character; will show
dumpkeys(1), loadkeys(1) will set combinations.

◦ SAK (none): Secure Attention Key. This is supposed to kill all
processes related to the current tty, and reset the tty to a known
default state. It is not completely implemented—it is not quite clear
what resetting the keyboard/console should do to the fonts and
keymaps. The easiest solution is to send a signal to some trusted
daemon, and let it reset keyboard and console as desired. In this
way we obtain something closely related to the Spawn_Console
function below.

◦ Decr_Console (AltL-LeftArrow): switch to the virtual console that
precedes the current console in the cyclic order.

◦ Incr_Console (AltL-RightArrow): switch to the virtual console that
follows the current console in the cyclic order.

◦ Spawn_Console or KeyboardSignal (AltL-UpArrow): send a specified
process a specified signal. I use this to signal init that it should create
a fresh virtual console for me.

◦ Bare_Num_Lock (Shift-NumLock): toggle the NumLock setting
(regardless of keyboard application mode).

As long as no new releases of init and loadkeys have come out, you can
play with this by using loadkeys and starting the program spawn_console:

% loadkeys >> EOF
 alt keycode 103 = 0x0212
 EOF
 % spawn_console &

Of course, if you put this in /etc/rc.local, you would probably want to start
getty instead of bash.

https://secure2.linuxjournal.com/ljarchive/LJ/014/1080l2.html

4. do_pad, commonly used for the keypad keys. In keyboard application
mode this produces some three-character string ESC O X (with variable X
depending on the key), provided that Shift is not pressed simultaneously.
Otherwise, when NumLock is on, we get the symbol printed on the key
(0123456789.+ -/* and CR).
Finally, if NumLock is not on, the four arrow keys yield ESC [X (with X=A, B,
C, or Dp when not in cursor key mode, and ESC O X otherwise, while the
remaining keys are treated as function keys, and yield the associated
string. For the middle key (keypad-5) we find four possibilities:

◦ in keyboard application mode (unshifted), ESC O u
◦ in keyboard application mode, shifted, without NumLock, ESC O G
◦ otherwise, without NumLock, ESC [G
◦ but with NumLock, 5.

If you think this is unnecessarily complicated, I agree. It is a messy
combination of VT100 and DOS keyboard behavior. However, so far
suggestions for change have met with too much resistance.

5. do_dead is used for “dead keys” that provide the following key with a
diacritical. By default there are no dead keys. One may define keys
producing a dead grave, acute, circumflex, tilde, or diaeresis. How a dead
key combines with a following key is specified using the compose
mechanism discussed above.

6. do_cons is used for switching consoles. By default the combinations
(Ctrl-)AltL-Fn switch to virtual console n for n in the range 1-12, and AltR-
Fn switches to console n+12 for these same n.

7. do_cur handles cursor keys. One gets either ESC [X or ESC O X (with X one
of A, B, C, or D) depending on the cursor key mode. (One sets or clears
cursor key mode by sending ESC [? 1 h or ESC [? 1 l to the console.)

8. do_shift maintains the shift state (the up/down state of the modifier keys).
9. do_meta is commonly used for ordinary keys combined with AltL. If the

keyboard is in metamode, this will yield a pair ESC x; otherwise x | 0x80 is
produced, where x is the key pressed in both cases. (You can set or clear
metamode using the tiny utility setmetamode(1).)

10. do_ascii is used to construct given codes: press AltL, type a decimal code
on the keypad, and release AltL. This yields the character with the given
code. In Unicode mode the same works in hexadecimal: press AltR, type a
hexadecimal code on the keypad, possibly using the ordinary a, b, c, d, e,
and f keys, and release AltR. This yields the Unicode symbol with the code
given.

11. do_lock toggles the state of the corresponding modifier key lock. (Recall
the line we saw above: shift_final = shift_state ^ kbd-<lockstate.) Thus, if
you have your Cyrillic keys under combinations with AltR, you can use AltR

together with other keys to get only a few Cyrillic symbols, but should type
AltGr_Lock if you plan to type a longish Cyrillic text. (Note that the right Alt
key, that I called AltR here, is usually known as AltGr.)

12. do_lowercase is used for the handling of CapsLock. Note that CapsLock is
different from ShiftLock. With ShiftLock, a digit 4 will be turned into a
dollar sign (for default keyboard layout), but CapsLock will only affect
lower case letters, and turn them into the corresponding upper case
letters. Type 11 is equivalent to type 0, with the added information that
the symbol may be affected by CapsLock (and the resulting character is
the one that would have resulted from pressing Shift).

As already mentioned, almost all of this can be changed dynamically by use of
loadkeys(1). The current state is dumped by dumpkeys(1). A list of known
symbols is provided by dumpkeys -l. The keycodes associated with the various
keys can be found using showkey(1). These and many other utilities for
keyboard and console can be found in kbd-0.90.tar.gz on ftp.funet.fi and its
mirror sites.

Using loadkeys

Use loadkeys to change the code produced by the BackSpace key from Delete
to BackSpace:

% loadkeys
keycode 14 = BackSpace

Assign the string “emacs\n” to the function key F12, and “rm *~\n” to Shift-F12
(the keycode 88 was found using showkey; the F66 is a random unused
function key symbol):

% loadkeys
 keycode 88 = F12
 shift keycode 88 = F66
 string F12 = "emacs\n"
 string F66 = "rm *~\n"

Create the compose combination that will compose | and S into $:

% loadkeys
 compose '|' 'S' to '$'
 compose 'S' '|' to '$'

Reset to some default state:

% loadkeys -d

Sequel

After the above handling, the obtained character(s) are put in the raw tty
queue. Depending on the mode of the tty, they will be processed and
transferred to the cooked tty queue. (Don't confuse raw mode as stty knows it,
with the raw scancode mode discussed above.) Finally, the application will get
them when it does getchar();.

Andries Brouwer, aeb@cwi.nl, has used Unix for various mathematical,
linguistic, and playful purposes the past 20 years or so. He might be known to
some for the first net release of hack.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:aeb@cwi.nl
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/014/toc014.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

	Features
	News & Articles
	Reviews
	Columns
	Introduction to Eiffel
	Dan Wilder
	The Pitch
	Classes
	Inheritance
	Polymorphism
	Multiple Inheritance
	Genericity
	Summary

	Review: xBASE Products for Linux
	Robert Broughton
	FlagShip
	dBMAN
	A Benchmark
	Compatibility

	Review: Intelligent Multiport Serial Boards
	Greg Hankins
	Hardware Features
	Comtrol RocketPort RA 8
	Cyclades Cyclom-8Y
	DigiBoard PC/8e
	Stallion EasyIO/8, and EasyConnection
8/32
	Common Features
	Usability Testing
	Performance Benchmarks
	Testing Platform
	Benchmarking Software
	Output Tests
	Output Test Results
	Comtrol RocketPort RA 8
	Cyclades Cyclom-8Yo
	DigiBoard PC/8e
	Stallion EasyIO/8
	Input Tests
	Conclusion
	Resoures

	Linux at the UW Computer Fair
	LJ Staff

	Linux at COMDEX/Fall
	Mark Bolzern

	Interview with Mark Bolzern
	Linux Journal Staff

	Caldera and Corsair
	LJ Staff
	Myths Debunked
	Commercial Components

	SlickEdit
	Jeff Bauer
	Resources

	Running Linux
	Grant Johnson

	Letters to the Editor
	Various
	Random Services
	Importance
	Linked Lists again
	LJ Responds:
	Scilab Revisited

	Changes To Linux Journal
	Phil Hughes

	New Products
	LJ Staff
	Metro Link releases Motif 2.0 for Linux
	WGS releases Linux Pro 2.2
	Mazama Packet Filter

	Upgrading the Linux Kernel
	Mark Komarinski
	Upgrading Your Kernel
	Misc. Other Upgrades

	The Linux keyboard driver
	Andries E. Brouwer
	Scancodes First
	Scancodes to Keycodes
	Keymaps
	Key # symbols
	Using loadkeys
	Sequel

